Analytical and Bioanalytical Chemistry

, Volume 408, Issue 30, pp 8611–8620 | Cite as

Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification

  • Jonathan Sabaté del Río
  • Marketa Svobodova
  • Paulina Bustos
  • Pablo Conejeros
  • Ciara K. O’SullivanEmail author
Research Paper
Part of the following topical collections:
  1. Isothermal Nucleic Acid Amplification in Bioanalysis


Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10−8 μg ml−1 (3 · 103 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation.

Graphical abstract

Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver


Electrochemical genosensor DNA Recombinase polymerase amplification (RPA) Piscirickettsia salmonis 


Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

216_2016_9639_MOESM1_ESM.pdf (50 kb)
ESM 1 (PDF 49 kb)


  1. 1.
    Fryer JL et al. Piscirickettsia-salmonis gen-nov, sp-nov, the causative agent of an epizootic disease in salmonid fishes. Int J Syst Bacteriol. 1992;42(1):120–6.CrossRefGoogle Scholar
  2. 2.
    Mauel MJ, Ware C, Smith PA. Culture of Piscirickettsia salmonis on enriched blood agar. J Vet Diagn Investig. 2008;20(2):213–4.CrossRefGoogle Scholar
  3. 3.
    Mikalsen J et al. Agar culture of Piscirickettsia salmonis, a serious pathogen of farmed salmonid and marine fish. FEMS Microbiol Lett. 2008;278(1):43–7.CrossRefGoogle Scholar
  4. 4.
    Branson EJ, Diazmunoz DN. Description of a new disease condition occurring in farmed coho salmon, Oncorhynchus kisutch (Walbaum), in South America. J Fish Dis. 1991;14(2):147–56.CrossRefGoogle Scholar
  5. 5.
    Arkush KD et al. Genetic characterization and experimental pathogenesis of Piscirickettsia salmonis isolated from white seabass Atractoscion nobilis. Dis Aquat Org. 2005;63(2):139–49.CrossRefGoogle Scholar
  6. 6.
    Cvitanich J, Garate ON, Smith C. The isolation of a rickettsia‐like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis. 1991;14(2):121–45.CrossRefGoogle Scholar
  7. 7.
    Jones S et al. Virulence and antigenic characteristics of a cultured Rickettsiales-like organism isolated from farmed Atlantic salmon Salmo salar in eastern Canada. Dis Aquat Org. 1998;33(1):25.CrossRefGoogle Scholar
  8. 8.
    Rodger H, Drinan E. Observation of a rickettsia‐like organism in Atlantic salmon, Salmo salar L., in Ireland. J Fish Dis. 1993;16(4):361–9.CrossRefGoogle Scholar
  9. 9.
    Corbeil S, Hyatt AD, Crane MSJ. Characterisation of an emerging rickettsia-like organism in Tasmanian farmed Atlantic salmon Salmo salar. Dis Aquat Org. 2005;64(1):37–44.CrossRefGoogle Scholar
  10. 10.
    Olsen A et al. Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway—epidemiological, pathological and microbiological findings. Dis Aquat Org. 1997;31(1):35–48.CrossRefGoogle Scholar
  11. 11.
    Cabezas M. Fármacos naturales en el cultivo de Salmonídeos: una alternativa en el control de enfermedades. Salmociencia. 2006;1:27–33.Google Scholar
  12. 12.
    Rozas M, Enríquez R. Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis. 2014;37(3):163–88.CrossRefGoogle Scholar
  13. 13.
    Marshall SH et al. Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. Vaccine. 2007;25(11):2095–102.CrossRefGoogle Scholar
  14. 14.
    Kuzyk MA et al. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine. 2001;19(17):2337–44.CrossRefGoogle Scholar
  15. 15.
    Tobar JA et al. Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial septicaemia. Vaccine. 2011;29(12):2336–40.CrossRefGoogle Scholar
  16. 16.
    Leal J, Woywood D. Piscirickettsiosis en Chile: Avances y perspectivas para su control. Salmociencia. 2007;2:34–42.Google Scholar
  17. 17.
    Fryer J et al. Isolation of a rickettsiales-like organism from diseased coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol. 1990;25(2):107–14.CrossRefGoogle Scholar
  18. 18.
    Mauel MJ, Miller DL. Piscirickettsiosis and piscirickettsiosis-like infections in fish: a review. Vet Microbiol. 2002;87(4):279–89.CrossRefGoogle Scholar
  19. 19.
    Fryer J, Hedrick R. Piscirickettsia salmonis: a Gram‐negative intracellular bacterial pathogen of fish. J Fish Dis. 2003;26(5):251–62.CrossRefGoogle Scholar
  20. 20.
    Lannan C, Ewing S, Fryer J. A fluorescent antibody test for detection of the rickettsia causing disease in Chilean salmonids. J Aquat Anim Health. 1991;3(4):229–34.CrossRefGoogle Scholar
  21. 21.
    Aguayo J et al. Detection of Piscirickettsia salmonis in fish tissues by an enzyme-linked immunosorbent assay using specific monoclonal antibodies. Dis Aquat Org. 2002;49(1):33–8.CrossRefGoogle Scholar
  22. 22.
    Mauel M, Giovannoni S, Fryer J. Development of polymerase chain reaction assays for detection, identification, and differentiation of Piscirickettsia salmonis. Dis Aquat Org. 1996;26(3):189–95.CrossRefGoogle Scholar
  23. 23.
    Corbeil S, McColl KA, Crane MSJ. Development of a TaqMan quantitative PCR assay for the identification of Piscirickettsia salmonis. Bull-Eur Assoc Fish Pathol. 2003;23(3):95–101.Google Scholar
  24. 24.
    Dettleff P et al. Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar. Fish Shellfish Immunol. 2015;45(1):67–71.CrossRefGoogle Scholar
  25. 25.
    Wu G, Zaman MH. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ. 2012;90(12):914–20.CrossRefGoogle Scholar
  26. 26.
    Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip. 2012;12(14):2469–86.CrossRefGoogle Scholar
  27. 27.
    Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors. 2013;3(1):18–43.CrossRefGoogle Scholar
  28. 28.
    Wu J et al. Extraction, amplification and detection of DNA inmicrofluidic chip-based assays. Microchim Acta. 2014;181(13–14):1611–31.CrossRefGoogle Scholar
  29. 29.
    Piepenburg O et al. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):1115–21.CrossRefGoogle Scholar
  30. 30.
    Loo JFC et al. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening. Talanta. 2013;115:159–65.CrossRefGoogle Scholar
  31. 31.
    Silva G et al. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. J Virol Methods. 2015;222:138–44.CrossRefGoogle Scholar
  32. 32.
    Abd El Wahed A et al. Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS ONE. 2015;10(6):e0129682.CrossRefGoogle Scholar
  33. 33.
    Lillis L et al. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS ONE. 2014;9(9):e108189.CrossRefGoogle Scholar
  34. 34.
    Kersting S, et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J. 2014;13.Google Scholar
  35. 35.
    TwistDX. Support information, FAQ. [cited 2015 8 August]; Available from:
  36. 36.
    Snow M et al. Development, application and validation of a Taqman real-time RT-PCR assay for the detection of infectious salmon anaemia virus (ISAV) in Atlantic salmon (Salmo salar). Dev Biol (Basel). 2006;126:133–45. discussion 325–6.Google Scholar
  37. 37.
    Karatas S et al. Real time PCR detection of Piscirickettsia salmonis from formalin-fixed paraffin-embedded tissues. J Fish Dis. 2008;31(10):747–53.CrossRefGoogle Scholar
  38. 38.
    del Río JS et al. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron. 2014;54:674–8.CrossRefGoogle Scholar
  39. 39.
    Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids. 2008;27(3):224–43.CrossRefGoogle Scholar
  40. 40.
    Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–2.CrossRefGoogle Scholar
  41. 41.
    Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol. 2002;20(2):163–79.CrossRefGoogle Scholar
  42. 42.
    Tong Y, Lemieux B, Kong H. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection. BMC Biotechnol. 2011;11(1):1–7.CrossRefGoogle Scholar
  43. 43.
    Fire A, Xu S-Q. Rolling replication of short DNA circles. Proc Natl Acad Sci USA. 1995;92.Google Scholar
  44. 44.
    Landegren U et al. A ligase-mediated gene detection technique. Science. 1988;241(4869):1077–80.CrossRefGoogle Scholar
  45. 45.
    Notomi T et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.CrossRefGoogle Scholar
  46. 46.
    Kimura Y et al. Optimization of turn-back primers in isothermal amplification. Nucleic Acids Res. 2011;39(9):e59.CrossRefGoogle Scholar
  47. 47.
    Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16(3):223–9.CrossRefGoogle Scholar
  48. 48.
    Mori Y et al. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59(2):145–57.CrossRefGoogle Scholar
  49. 49.
    Poon LLM et al. Sensitive and inexpensive molecular test for falciparum malaria: detecting plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006;52(2):303–6.CrossRefGoogle Scholar
  50. 50.
    Wu Q et al. Integrated glass microdevice for nucleic acid purification, loop-mediated isothermal amplification, and online detection. Anal Chem. 2011;83(9):3336–42.CrossRefGoogle Scholar
  51. 51.
    James A, Macdonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Rev Mol Diagn. 2015;15(11):1475–89.CrossRefGoogle Scholar
  52. 52.
    Rosser A et al. Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasites Vectors. 2015;8:446.CrossRefGoogle Scholar
  53. 53.
    Jaroenram W, Owens L. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome. J Virol Methods. 2014;208:144–51.CrossRefGoogle Scholar
  54. 54.
    Kim JY, Lee J-L. Rapid detection of Salmonella Enterica serovar enteritidis from eggs and chicken meat by real-time recombinase polymerase amplification in comparison with the two-step real-time PCR. J Food Saf. 2016.Google Scholar
  55. 55.
    Clancy E et al. Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect Dis. 2015;15:481.CrossRefGoogle Scholar
  56. 56.
    Yehia N et al. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Virol Methods. 2015;223:45–9.CrossRefGoogle Scholar
  57. 57.
    Santiago-Felipe S et al. Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc. Microchim Acta. 2016;183(3):1195–202.CrossRefGoogle Scholar
  58. 58.
    Kunze A et al. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem. 2016;88(1):898–905.CrossRefGoogle Scholar
  59. 59.
    Santiago-Felipe S et al. One-pot isothermal DNA amplification—hybridisation and detection by a disc-based method. Sensors Actuators B Chem. 2014;204:273–81.CrossRefGoogle Scholar
  60. 60.
    Kersting S et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014;181(13–14):1715–23.CrossRefGoogle Scholar
  61. 61.
    Ortiz M et al. Bleed-to-read disposable microsystems for the genetic and serological analysis of celiac disease markers with amperometric detection. Electrophoresis. 2015;36(16):1920–6.CrossRefGoogle Scholar
  62. 62.
    Kellner C et al. Automated microsystem for electrochemical detection of cancer markers. Electrophoresis. 2011;32(8):926–30.CrossRefGoogle Scholar
  63. 63.
    Henry OY et al. Design and testing of a packaged microfluidic cell for the multiplexed electrochemical detection of cancer markers. Electrophoresis. 2009;30(19):3398–405.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jonathan Sabaté del Río
    • 1
  • Marketa Svobodova
    • 1
  • Paulina Bustos
    • 2
  • Pablo Conejeros
    • 2
  • Ciara K. O’Sullivan
    • 1
    • 3
    Email author
  1. 1.Nanobiotechnology and Bioanalysis Group, Departament d’Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Centro de Investigación y Gestión de Recursos Naturales, Facultad de CienciasUniversidad de ValparaísoValparaísoChile
  3. 3.Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations