Skip to main content
Log in

An LC/ESI-SRM/MS method to screen chemically modified hemoglobin: simultaneous analysis for oxidized, nitrated, lipidated, and glycated sites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Proteins are continuously exposed to various reactive chemical species (reactive oxygen/nitrogen species, endogenous/exogenous aldehydes/epoxides, etc.) due to physiological and chemical stresses, resulting in various chemical modifications such as oxidation, nitration, glycation/glycoxidation, lipidation/lipoxidation, and adduct formation with drugs/chemicals. Abundant proteins with a long half-life, such as hemoglobin (Hb, t 1/2 63 days, ∼150 mg/mL), are believed to be major targets of reactive chemical species that reflect biological events. Chemical modifications on Hb have been investigated mainly by mechanistic in vitro experiments or in vivo/clinical experiments focused on single target modifications. Here, we describe an optimized LC/ESI-SRM/MS method to screen oxidized, nitrated, lipidated, and glycated sites on Hb. In vivo preliminary results suggest that this method can detect simultaneously the presence of oxidation (+16 Da) of α-Met32, α-Met76, β-Met55, and β-Trp15 and adducts of malondialdehyde (+54 Da) and glycation (+162 Da) of β-Val1 in a blood sample from a healthy volunteer.

Screening chemical modifications on hemoglobin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACTH:

Adrenalcorticotropic hormone

Ang:

Angiotensin

Arg:

Arginine

Asp:

Aspartic acid

Cys:

Cysteine

DHB:

2,5-Dihydroxybenzoic acid

DTT:

Dithiothreitol

ESI:

Electrospray ionization

FA:

Formic acid

Hb:

Hemoglobin

His:

Histidine

HNE:

4-Hydroxy-2(E)-nonenal

IAA:

Iodoacetamide

LC:

Liquid chromatography

Lys:

Lysine

m/z :

Mass-to-charge ratio

MALDI:

Matrix-assisted laser desorption ionization

MDA:

Malondialdehyde

Met:

Methionine

MG:

Methylglyoxal

MG-DH:

N δ-(4,5-Dihydroxy-4-methylimidazolidine-2-yl)ornithine

MG-H1:

N δ-(5-Hydro-5-methyl-4-imidazolon-2-yl)ornithine

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PBS:

Phosphate-buffered saline

SRM:

Selected reaction monitoring

TEP:

1,1,3,3-Tetraethoxypropane

TFA:

Trifluoroacetic acid

TOF:

Time of flight

Trp:

Tryptophan

Tyr:

Tyrosine

V8:

Endoproteinase Glu-C

References

  1. Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P, Tornqvist M. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Anal Technol Biomed Life Sci. 2002;778:279–308. doi:10.1016/S1570-0232(02)00172-1.

    Article  Google Scholar 

  2. Boysen G, Georgieva NI, Upton PB, Walker VE, Swenberg JA. N-terminal globin adducts as biomarkers for formation of butadiene derived epoxides. Chem-Biol Interact. 2007;166:84–92. doi:10.1016/j.cbi.2006.10.005.

    Article  CAS  Google Scholar 

  3. Meyer MJ, Bechtold WE. Protein adduct biomarkers: state of the art. Environ Health Perspect. 1996;104:879–82. doi:10.2307/3433005.

    Article  CAS  Google Scholar 

  4. Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL. Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem. 2007;282:5862–70. doi:10.1074/jbc.M608126200.

    Article  CAS  Google Scholar 

  5. Zhan X, Desiderio DM. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal Biochem. 2006;354:279–89. doi:10.1016/j.ab.2006.05.024.

    Article  CAS  Google Scholar 

  6. Goto T, Kojima S, Shitamichi S, Lee SH, Oe T. Chemical modificomics: a novel strategy for efficient biomarker discovery through chemical modifications on a target peptide. Anal Methods. 2012;4:1945–52. doi:10.1039/C2AY05841C.

    Article  CAS  Google Scholar 

  7. Lee SH, Takahashi R, Goto T, Oe T. Mass spectrometric characterization of modifications to angiotensin II by lipid peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal. Chem Res Toxicol. 2010;23:1771–85. doi:10.1021/tx100228q.

    Article  CAS  Google Scholar 

  8. Lee SH, Masuda T, Goto T, Oe T. MALDI-TOF/MS-based label-free binding assay for angiotensin II type 1 receptor: application fornovel angiotensin peptides. Anal Biochem. 2013;437:10–6. doi:10.1016/j.ab.2013.01.023.

    Article  CAS  Google Scholar 

  9. Goto T, Murata K, Lee SH, Oe T. Complete amino acid sequencing and immunoaffinity clean-up can facilitate screening of various chemical modifications on human serum albumin. Anal Bioanal Chem. 2013;405:7383–95. doi:10.1007/s00216-013-7146-0.

    Article  CAS  Google Scholar 

  10. Goto T, Kudo Y, Lee SH, Oe T. Efficient strategy for screening chemical modifications on human serum albumin: use of LC/MS/MS and differential analysis. Bunseki Kagaku. 2015;64:653–9. doi:10.2116/bunsekikagaku.64.653.

    Article  CAS  Google Scholar 

  11. Kajita R, Goto T, Lee SH, Oe T. Aldehyde stress-mediated novel modification of proteins: epimerization of the N-terminal amino acid. Chem Res Toxicol. 2013;26:1926–36. doi:10.1021/tx400354d.

    Article  CAS  Google Scholar 

  12. Osaki F, Goto T, Lee SH, Oe T. Predicted multiple selected reaction monitoring to screen activated drug-mediated modifications on human serum albumin. Anal Biochem. 2014;449:59–67. doi:10.1016/j.ab.2013.12.016.

    Article  CAS  Google Scholar 

  13. Lee SH, Miyamoto K, Goto T, Oe T. Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry. J Proteomics. 2011;75:435–49. doi:10.1016/j.jprot.2011.08.010.

    Article  CAS  Google Scholar 

  14. Lee SH, Matsushima K, Miyamoto K, Oe T. UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis. J Proteomics. 2016;133:54–65. doi:10.1016/j.jprot.2015.11.026.

    Article  CAS  Google Scholar 

  15. Lee SH, Matsushima K, Miyamoto K, Oe T. Mass spectrometry data from proteomic analysis of human skin keratins after exposure to UV radiation. Data Brief. 2016;7:100–6. doi:10.1016/j.dib.2016.02.008.

    Article  CAS  Google Scholar 

  16. Peters Jr T. All about albumin: biochemistry, genetics, and medical applications. San Diego: Academic; 1996. ISBN 0- 12-552110-3.

    Google Scholar 

  17. Cox GN, Smith DJ, Carlson SJ, Bendele AM, Chlipala EA, Doherty DH. Enhanced circulating half-life and hematopoietic properties of a human granulocyte colony-stimulating factor/immunoglobulin fusion protein. Exp Hematol. 2004;32:441–9. doi:10.1016/j.exphem.2004.01.012.

    Article  CAS  Google Scholar 

  18. Shapiro R, Mcmanus MJ, Zalut C, Bunn HF. Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem. 1980;255:3120–7.

    CAS  Google Scholar 

  19. Chen HJC, Chen YC. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem. 2012;84:7881–90. doi:10.1021/ac301597r.

    Article  CAS  Google Scholar 

  20. Xiang W, Weisbach V, Sticht H, Seebahn A, Bussmann J, Zimmermann R, et al. Oxidative stress-induced posttranslational modifications of human hemoglobin in erythrocytes. Arch Biochem Biophys. 2013;529:34–44. doi:10.1016/j.abb.2012.11.002.

    Article  CAS  Google Scholar 

  21. Kautiainen A, Tornqvist M, Svensson K, Osterman-Golkar S. Adducts of malonaldehyde and a few other aldehydes to hemoglobin. Carcinogenesis. 1989;10:2123–30. doi:10.1093/carcin/10.11.2123.

    Article  CAS  Google Scholar 

  22. Chen HC, Lin W, Chiu S, Fan C. Multistage mass spectrometric analysis of human hemoglobin glutathionylation: correlation with cigarette smoking. Chem Res Toxicol. 2014;27:864–72. doi:10.1021/tx5000359.

    Article  CAS  Google Scholar 

  23. Chevolleau S, Jacques C, Canlet C, Tulliez J, Debrauwer L. Analysis of hemoglobin adducts of acrylamide and glycidamide by liquid chromatography-electrospray ionization tandem mass spectrometry, as exposure biomarkers in French population. J Chromatogr A. 2007;1167:125–34. doi:10.1016/j.chroma.2007.07.044.

    Article  CAS  Google Scholar 

  24. Zhang F, Brzak K, Pottenger LH, Bartels MJ. Direct quantitation of hydroxyethylvaline in hemoglobin by liquid chromatography/positive electrospray tandem mass spectrometry. J Chromatogr A. 2012;1248:84–92. doi:10.1016/j.chroma.2012.05.019.

    Article  CAS  Google Scholar 

  25. Ospina M, Costin A, Barry AK, Vesper HW. Characterization of N-terminal formaldehyde adducts. Rapid Commun Mass Spectrom. 2011;25:1043–50. doi:10.1002/rcm.4954.

    Article  CAS  Google Scholar 

  26. Antunes AM, Godinho AL, Martins IL, Oliveira MC, Gomes R, Coelho AV, et al. Protein adducts as prospective biomarkers of nevirapine toxicity. Chem Res Toxicol. 2010;23:1714–25. doi:10.1021/tx100186t.

    Article  CAS  Google Scholar 

  27. Charneira C, Godinho AL, Oliveira MC, Pereira SA, Monteiro EC, Marques MM, et al. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity. Chem Res Toxicol. 2011;24:2129–41. doi:10.1021/tx200337b.

    Article  CAS  Google Scholar 

  28. Rahbar S. The discovery of glycated hemoglobin: a major event in the study of nonenzymatic chemistry in biological systems. Ann N Y Acad Sci. 2005;1043:9–19. doi:10.1196/annals.1333.002.

    Article  CAS  Google Scholar 

  29. Chen HJC, Chen YC, Hsiao CF, Chen PF. Mass spectrometric analysis of glyoxal and methylglyoxal-induced modifications in human hemoglobin from poorly controlled type 2 diabetes mellitus patients. Chem Res Toxicol. 2015;28:2377–89. doi:10.1021/acs.chemrestox.5b00380.

    Article  CAS  Google Scholar 

  30. Sabbioni G, Liu YY, Yan H, Sepai O. Hemoglobin adducts, urinary metabolites and health effects in 2,4,6-trinitrotoluene exposed workers. Carcinogenesis. 2005;26:1272–9. doi:10.1093/carcin/bgi078.

    Article  CAS  Google Scholar 

  31. Flack SL, Fent KW, Gaines LG, Thomasen JM, Whittaker SG, Ball LM, et al. Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate. Biomarkers. 2011;16:261–70. doi:10.3109/1354750X.2010.549242.

    Article  CAS  Google Scholar 

  32. Fenaille F, Mottier P, Turesky RJ, Ali S, Guy PA. Comparison of analytical techniques to quantify malondialdehyde in milk powders. J Chromatogr A. 2001;921:237–45. doi:10.1016/S0021-9673(01)00883-4.

    Article  CAS  Google Scholar 

  33. Schöneich C, Sharov VS. Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006;41:1507–20. doi:10.1016/j.freeradbiomed.2006.08.013.

    Article  Google Scholar 

  34. Alvarez B, Rubbo H, Kirk M, Barnes S, Freeman BA, Radi R. Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol. 1996;9:390–6. doi:10.1021/tx950133b.

    Article  CAS  Google Scholar 

  35. Sarver A, Scheffler NK, Shetlar MD, Gibson BW. Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom. 2001;12:439–48. doi:10.1016/S1044-0305(01)00213-6.

    Article  CAS  Google Scholar 

  36. Ishii Y, Ogara A, Katsumata T, Umemura T, Nishikawa A, Iwasaki Y, et al. Quantification of nitrated tryptophan in proteins and tissues by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2007;44:150–9. doi:10.1016/j.jpba.2007.01.012.

    Article  CAS  Google Scholar 

  37. Doorn JA, Petersen DR. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chem Res Toxicol. 2002;15:1445–50. doi:10.1021/tx025590o.

    Article  CAS  Google Scholar 

  38. Ishii T, Kumazawa S, Sakurai T, Nakayama T, Uchida K. Mass spectroscopic characterization of protein modification by malondialdehyde. Chem Res Toxicol. 2006;19:122–9. doi:10.1021/tx050231p.

    Article  CAS  Google Scholar 

  39. Brock JW, Cotham WE, Thorpe SR, Baynes JW, Ames JM. Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis. J Mass Spectrom. 2007;42:89–100. doi:10.1002/jms.1144.

    Article  CAS  Google Scholar 

  40. Higgins PJ, Bunn HF. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J Biol Chem. 1981;256:5204–8.

    CAS  Google Scholar 

  41. Folk JE. The influence of the lysine-glucose reaction on enzymatic digestion. Arch Biochem Biophys. 1956;64:6–18. doi:10.1016/0003-9861(56)90236-3.

    Article  CAS  Google Scholar 

  42. Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D. Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem. 2007;79:5991–9. doi:10.1021/ac070619k.

    Article  CAS  Google Scholar 

  43. Bose T, Bhattacherjee A, Banerjee S, Chakraborti AS. Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics. Arch Biochem Biophys. 2013;529:99–104. doi:10.1016/j.abb.2012.12.001.

    Article  CAS  Google Scholar 

  44. Sun S, Zhou JY, Yang W, Zhang H. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal Biochem. 2014;446:76–81. doi:10.1016/j.ab.2013.10.024.

    Article  CAS  Google Scholar 

  45. Yang Z, Attygalle AB. LC/MS characterization of undesired products formed during iodoacetamide derivatization of sulfhydryl groups of peptides. J Mass Spectrom. 2007;42:233–43. doi:10.1002/jms.1157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Challenging Exploratory Research (to T.O., No. 15 K14935 for 2015–2016) from the Japan Society for the Promotion of Science. The authors are indebted to Professor Ian A. Blair (University of Pennsylvania, Philadelphia, PA) and Astellas Pharma Inc. (Analysis and Pharmacokinetics Research Labs, Tsukuba, Japan) for donating a used LCQ Deca and API2000, respectively. We also thank the Biomedical Research Core (School of Medicine) at Tohoku University for the use of their MALDI-TOF/MS instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Oe.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Human and animal rights and informed consent

This study was approved by the Human Research Ethics Committee, Graduate School of Pharmaceutical Sciences, Tohoku University, on Aug. 10, 2012 (term 2012–2017, registration #12-03, “Chemical modificomics on abundant proteins”). A blood sample was obtained from a healthy volunteer who provided written informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojima, K., Lee, S.H. & Oe, T. An LC/ESI-SRM/MS method to screen chemically modified hemoglobin: simultaneous analysis for oxidized, nitrated, lipidated, and glycated sites. Anal Bioanal Chem 408, 5379–5392 (2016). https://doi.org/10.1007/s00216-016-9635-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9635-4

Keywords

Navigation