Generation of electrochemiluminescence at bipolar electrodes: concepts and applications

Abstract

Bipolar electrochemistry (BPE) is an unconventional technique where a conducting object is addressed electrochemically in an electrolyte without any wire connection with an external power supply. BPE has been known for decades but remained limited to only a couple of niche applications. However, it is now undergoing a true renewal of interest especially in the context of analytical chemistry. The bipolar electrode exhibits two distinct poles of opposite polarization with respect to the solution. This allows one to separate the localization of sensing elements versus reporting ones. Also, arrays of bipolar microelectrodes can be addressed simultaneously to perform parallel analyses. Among several reporting strategies, the combination of BPE with electro-chemiluminescence (ECL) is the most frequent choice owing to the very simple visual readout provided by ECL. This article reviews the field from the initial reports to the most recent ones, revealing numerous opportunities including novel analytical strategies for the detection of small molecular analytes and biorelevant molecules such as DNA, RNA, peptides, or other biomarkers.

Principle of electrochemiluminescence generation at one extremity of a bipolar electrode

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bard AJ. Electrogenerated chemiluminescence. New York: Dekker; 2004.

    Google Scholar 

  2. 2.

    Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    CAS  Article  Google Scholar 

  3. 3.

    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    CAS  Article  Google Scholar 

  4. 4.

    Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42.

    CAS  Article  Google Scholar 

  5. 5.

    Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52(40):10438–56.

    CAS  Article  Google Scholar 

  6. 6.

    Crooks RM. Principles of bipolar electrochemistry. ChemElectroChem. 2016;3:357–9.

    CAS  Article  Google Scholar 

  7. 7.

    Mavré F, Anand RK, Laws DR, Chow K-F, Chang B-Y, Crooks JA, et al. Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem. 2010;82(21):8766–74.

    Article  Google Scholar 

  8. 8.

    Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46(11):2513–23.

    CAS  Article  Google Scholar 

  9. 9.

    Zhan W, Alvarez J, Crooks RM. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J Am Chem Soc. 2002;124(44):13265–70.

    CAS  Article  Google Scholar 

  10. 10.

    Arora A, Eijkel JCT, Morf WE, Manz A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal Chem. 2001;73(14):3282–8.

    CAS  Article  Google Scholar 

  11. 11.

    Chow K-F, Mavré F, Crooks RM. Wireless electrochemical DNA microarray sensor. J Am Chem Soc. 2008;130(24):7544–5.

    CAS  Article  Google Scholar 

  12. 12.

    Chow K-F, Mavré F, Crooks JA, Chang B-Y, Crooks RM. A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc. 2009;131(24):8364–5.

    CAS  Article  Google Scholar 

  13. 13.

    Fosdick SE, Crooks JA, Chang B-Y, Crooks RM. Two-dimensional bipolar electrochemistry. J Am Chem Soc. 2010;132(27):9226–7.

    CAS  Article  Google Scholar 

  14. 14.

    Mavré F, Chow K-F, Sheridan E, Chang B-Y, Crooks JA, Crooks RM. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal Chem. 2009;81(15):6218–25.

    Article  Google Scholar 

  15. 15.

    Chang B-Y, Mavré F, Chow K-F, Crooks JA, Crooks RM. Snapshot voltammetry using a triangular bipolar microelectrode. Anal Chem. 2010;82(12):5317–22.

    CAS  Article  Google Scholar 

  16. 16.

    Chang B-Y, Crooks JA, Chow K-F, Mavré F, Crooks RM. Design and operation of microelectrochemical gates and integrated circuits. J Am Chem Soc. 2010;132(43):15404–9.

    CAS  Article  Google Scholar 

  17. 17.

    Chang B-Y, Chow K-F, Crooks JA, Mavré F, Crooks RM. Two-channel microelectrochemical bipolar electrode sensor array. Analyst. 2012;137(12):2827–33.

    CAS  Article  Google Scholar 

  18. 18.

    Oja SM, Zhang B. Electrogenerated chemiluminescence reporting on closed bipolar microelectrodes and the influence of electrode size. ChemElectroChem. 2016;3:457–64.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang X, Chen C, Li J, Zhang L, Wang E. New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform. Anal Chem. 2013;85(11):5335–9.

    CAS  Article  Google Scholar 

  20. 20.

    Zhang X, Li J, Jia X, Li D, Wang E. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system. Anal Chem. 2014;86(11):5595–9.

    CAS  Article  Google Scholar 

  21. 21.

    Juskova P, Neuzil P, Manz A, Foret F. Detection of electrochemiluminescence from floating metal platelets in suspension. Lab Chip. 2013;13(5):781–4.

    CAS  Article  Google Scholar 

  22. 22.

    Wu M-S, Yuan D-J, Xu J-J, Chen H-Y. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem. 2013;85(24):11960–5.

    CAS  Article  Google Scholar 

  23. 23.

    Wu M-S, Qian G-s XJ-J, Chen H-Y. Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal Chem. 2012;84(12):5407–14.

    CAS  Article  Google Scholar 

  24. 24.

    Khoshfetrat SM, Ranjbari M, Shayan M, Mehrgardi MA, Kiani A. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism. Anal Chem. 2015;87:8123–31.

    CAS  Article  Google Scholar 

  25. 25.

    Shi HW, Wu MS, Du Y, Xu JJ, Chen HY. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells. Biosens Bioelectron. 2014;55:459–63.

    CAS  Article  Google Scholar 

  26. 26.

    Wu M-S, Liu Z, Xu J-J, Chen H-Y. Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem. 2016;3:429–35.

    CAS  Article  Google Scholar 

  27. 27.

    Wu M-S, Liu Z, Shi H-W, Chen H-Y, Xu J-J. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Anal Chem. 2015;87:530–7.

    CAS  Article  Google Scholar 

  28. 28.

    Wu M-S, Yuan D-J, Xu J-J, Chen H-Y. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem Sci. 2013;4(3):1182–8.

    CAS  Article  Google Scholar 

  29. 29.

    Eßmann V, Jambrec D, Kuhn A, Schuhmann W. Linking glucose oxidation to luminol-based electrochemiluminescence using bipolar electrochemistry. Electrochem Commun. 2015;50:77–80.

    Article  Google Scholar 

  30. 30.

    Wang T, Fan S, Erdmann R, Shannon C. Detection of ferrocenemethanol and molecular oxygen based on electrogenerated chemiluminescence quenching at a bipolar electrode. Langmuir. 2013;29(51):16040–4.

    CAS  Article  Google Scholar 

  31. 31.

    Fan S, Shannon C. Electrochemiluminescence quenching by halide ions at bipolar electrodes. Electroanalysis. 2016;28:533–8.

    CAS  Article  Google Scholar 

  32. 32.

    Guo W, Lin X, Yan F, Su B. Vertically ordered silica mesochannel modified bipolar electrode for electrochemiluminescence imaging analysis. ChemElectroChem. 2016;3:480–6.

    CAS  Article  Google Scholar 

  33. 33.

    Wu SZ, Zhou ZY, Xu LR, Su B, Fang Q. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis. Biosens Bioelectron. 2014;53:148–53.

    CAS  Article  Google Scholar 

  34. 34.

    Zhang J-D, Yu T, Li J-Y, Xu J-J, Chen H-Y. An ITO bipolar array for electrochemiluminescence imaging of H2O2. Electrochem Commun. 2014;49:75–8.

    CAS  Article  Google Scholar 

  35. 35.

    Li H, Garrigue P, Bouffier L, Arbault S, Kuhn A, Sojic N. Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. Analyst. 2016. doi:10.1039/C6AN00652C.

    Google Scholar 

  36. 36.

    Fosdick SE, Berglund SP, Mullins CB, Crooks RM. Parallel screening of electrocatalyst candidates using bipolar electrochemistry. Anal Chem. 2013;85:2493–9.

    CAS  Article  Google Scholar 

  37. 37.

    Fosdick SE, Berglund SP, Mullins CB, Crooks RM. Evaluating electrocatalysts for the hydrogen evolution reaction using bipolar electrode arrays: bi- and trimetallic combinations of Co, Fe, Ni, Mo, and W. ACS Catal. 2014;4:1332–9.

    CAS  Article  Google Scholar 

  38. 38.

    Lin XM, Zheng LY, Gao GM, Chi YW, Chen GN. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. Anal Chem. 2012;84(18):7700–7.

    CAS  Article  Google Scholar 

  39. 39.

    Renault C, Scida K, Knust KN, Fosdick SE, Crooks RM. Paper-based bipolar electrochemistry. J Electrochem Sci Technol. 2013;4:146–52.

    CAS  Article  Google Scholar 

  40. 40.

    Feng Q-M, Pan J-B, Zhang H-R, Xu J-J, Chen H-Y. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun. 2014;50(75):10949–51.

    CAS  Article  Google Scholar 

  41. 41.

    Liu R, Zhang C, Liu M. Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sens Actuators B Chem. 2015;216:255–62.

    CAS  Article  Google Scholar 

  42. 42.

    Loget G, Kuhn A. Electric field-induced chemical locomotion of conducting objects. Nat Commun. 2011;2:535.

    Article  Google Scholar 

  43. 43.

    Loget G, Kuhn A. Bipolar electrochemistry for cargo-lifting in fluid channels. Lab Chip. 2012;12:1967–71.

    CAS  Article  Google Scholar 

  44. 44.

    Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N. Light-emitting electrochemical “swimmers”. Angew Chem Int Ed. 2012;51(45):11284–8.

    CAS  Article  Google Scholar 

  45. 45.

    Bouffier L, Zigah D, Adam C, Sentic M, Fattah Z, Manojlovic D, et al. Lighting up redox propulsion with luminol electrogenerated chemiluminescence. ChemElectroChem. 2014;1:95–8.

    Article  Google Scholar 

  46. 46.

    Sentic M, Arbault S, Goudeau B, Manojlovic D, Kuhn A, Bouffier L, et al. Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chem Commun. 2014;50:10202–5.

    CAS  Article  Google Scholar 

  47. 47.

    Loget G, Roche J, Kuhn A. True bulk synthesis of Janus objects by bipolar electrochemistry. Adv Mater. 2012;24:5111–6.

    CAS  Article  Google Scholar 

  48. 48.

    Sentic M, Arbault S, Bouffier L, Manojlovic D, Kuhn A, Sojic N. 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chem Sci. 2015;6:4433–7.

    CAS  Article  Google Scholar 

  49. 49.

    de Poulpiquet A, Diez-Buitrago B, Milutinovic M, Goudeau B, Bouffier L, Arbault S, et al. Dual-color electrogenerated chemiluminescence from dispersions of conductive microbeads addressed by bipolar electrochemistry. ChemElectroChem. 2016;3:404–9.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Laurent Bouffier or Alexander Kuhn or Neso Sojic.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with this work.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouffier, L., Arbault, S., Kuhn, A. et al. Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Anal Bioanal Chem 408, 7003–7011 (2016). https://doi.org/10.1007/s00216-016-9606-9

Download citation

Keywords

  • Electrochemiluminescence
  • Spectroelectrochemistry
  • Bipolar electrochemistry
  • Biosensors
  • Wireless sensing