Analytical and Bioanalytical Chemistry

, Volume 408, Issue 25, pp 7003–7011 | Cite as

Generation of electrochemiluminescence at bipolar electrodes: concepts and applications

  • Laurent BouffierEmail author
  • Stéphane Arbault
  • Alexander KuhnEmail author
  • Neso SojicEmail author
Part of the following topical collections:
  1. Analytical Electrochemiluminescence


Bipolar electrochemistry (BPE) is an unconventional technique where a conducting object is addressed electrochemically in an electrolyte without any wire connection with an external power supply. BPE has been known for decades but remained limited to only a couple of niche applications. However, it is now undergoing a true renewal of interest especially in the context of analytical chemistry. The bipolar electrode exhibits two distinct poles of opposite polarization with respect to the solution. This allows one to separate the localization of sensing elements versus reporting ones. Also, arrays of bipolar microelectrodes can be addressed simultaneously to perform parallel analyses. Among several reporting strategies, the combination of BPE with electro-chemiluminescence (ECL) is the most frequent choice owing to the very simple visual readout provided by ECL. This article reviews the field from the initial reports to the most recent ones, revealing numerous opportunities including novel analytical strategies for the detection of small molecular analytes and biorelevant molecules such as DNA, RNA, peptides, or other biomarkers.

Graphical Abstract

Principle of electrochemiluminescence generation at one extremity of a bipolar electrode


Electrochemiluminescence Spectroelectrochemistry Bipolar electrochemistry Biosensors Wireless sensing 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest associated with this work.


  1. 1.
    Bard AJ. Electrogenerated chemiluminescence. New York: Dekker; 2004.CrossRefGoogle Scholar
  2. 2.
    Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.CrossRefGoogle Scholar
  3. 3.
    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.CrossRefGoogle Scholar
  4. 4.
    Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42.CrossRefGoogle Scholar
  5. 5.
    Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52(40):10438–56.CrossRefGoogle Scholar
  6. 6.
    Crooks RM. Principles of bipolar electrochemistry. ChemElectroChem. 2016;3:357–9.CrossRefGoogle Scholar
  7. 7.
    Mavré F, Anand RK, Laws DR, Chow K-F, Chang B-Y, Crooks JA, et al. Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem. 2010;82(21):8766–74.CrossRefGoogle Scholar
  8. 8.
    Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46(11):2513–23.CrossRefGoogle Scholar
  9. 9.
    Zhan W, Alvarez J, Crooks RM. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J Am Chem Soc. 2002;124(44):13265–70.CrossRefGoogle Scholar
  10. 10.
    Arora A, Eijkel JCT, Morf WE, Manz A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal Chem. 2001;73(14):3282–8.CrossRefGoogle Scholar
  11. 11.
    Chow K-F, Mavré F, Crooks RM. Wireless electrochemical DNA microarray sensor. J Am Chem Soc. 2008;130(24):7544–5.CrossRefGoogle Scholar
  12. 12.
    Chow K-F, Mavré F, Crooks JA, Chang B-Y, Crooks RM. A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc. 2009;131(24):8364–5.CrossRefGoogle Scholar
  13. 13.
    Fosdick SE, Crooks JA, Chang B-Y, Crooks RM. Two-dimensional bipolar electrochemistry. J Am Chem Soc. 2010;132(27):9226–7.CrossRefGoogle Scholar
  14. 14.
    Mavré F, Chow K-F, Sheridan E, Chang B-Y, Crooks JA, Crooks RM. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal Chem. 2009;81(15):6218–25.CrossRefGoogle Scholar
  15. 15.
    Chang B-Y, Mavré F, Chow K-F, Crooks JA, Crooks RM. Snapshot voltammetry using a triangular bipolar microelectrode. Anal Chem. 2010;82(12):5317–22.CrossRefGoogle Scholar
  16. 16.
    Chang B-Y, Crooks JA, Chow K-F, Mavré F, Crooks RM. Design and operation of microelectrochemical gates and integrated circuits. J Am Chem Soc. 2010;132(43):15404–9.CrossRefGoogle Scholar
  17. 17.
    Chang B-Y, Chow K-F, Crooks JA, Mavré F, Crooks RM. Two-channel microelectrochemical bipolar electrode sensor array. Analyst. 2012;137(12):2827–33.CrossRefGoogle Scholar
  18. 18.
    Oja SM, Zhang B. Electrogenerated chemiluminescence reporting on closed bipolar microelectrodes and the influence of electrode size. ChemElectroChem. 2016;3:457–64.CrossRefGoogle Scholar
  19. 19.
    Zhang X, Chen C, Li J, Zhang L, Wang E. New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform. Anal Chem. 2013;85(11):5335–9.CrossRefGoogle Scholar
  20. 20.
    Zhang X, Li J, Jia X, Li D, Wang E. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system. Anal Chem. 2014;86(11):5595–9.CrossRefGoogle Scholar
  21. 21.
    Juskova P, Neuzil P, Manz A, Foret F. Detection of electrochemiluminescence from floating metal platelets in suspension. Lab Chip. 2013;13(5):781–4.CrossRefGoogle Scholar
  22. 22.
    Wu M-S, Yuan D-J, Xu J-J, Chen H-Y. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem. 2013;85(24):11960–5.CrossRefGoogle Scholar
  23. 23.
    Wu M-S, Qian G-s XJ-J, Chen H-Y. Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal Chem. 2012;84(12):5407–14.CrossRefGoogle Scholar
  24. 24.
    Khoshfetrat SM, Ranjbari M, Shayan M, Mehrgardi MA, Kiani A. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism. Anal Chem. 2015;87:8123–31.CrossRefGoogle Scholar
  25. 25.
    Shi HW, Wu MS, Du Y, Xu JJ, Chen HY. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells. Biosens Bioelectron. 2014;55:459–63.CrossRefGoogle Scholar
  26. 26.
    Wu M-S, Liu Z, Xu J-J, Chen H-Y. Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem. 2016;3:429–35.CrossRefGoogle Scholar
  27. 27.
    Wu M-S, Liu Z, Shi H-W, Chen H-Y, Xu J-J. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Anal Chem. 2015;87:530–7.CrossRefGoogle Scholar
  28. 28.
    Wu M-S, Yuan D-J, Xu J-J, Chen H-Y. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem Sci. 2013;4(3):1182–8.CrossRefGoogle Scholar
  29. 29.
    Eßmann V, Jambrec D, Kuhn A, Schuhmann W. Linking glucose oxidation to luminol-based electrochemiluminescence using bipolar electrochemistry. Electrochem Commun. 2015;50:77–80.CrossRefGoogle Scholar
  30. 30.
    Wang T, Fan S, Erdmann R, Shannon C. Detection of ferrocenemethanol and molecular oxygen based on electrogenerated chemiluminescence quenching at a bipolar electrode. Langmuir. 2013;29(51):16040–4.CrossRefGoogle Scholar
  31. 31.
    Fan S, Shannon C. Electrochemiluminescence quenching by halide ions at bipolar electrodes. Electroanalysis. 2016;28:533–8.CrossRefGoogle Scholar
  32. 32.
    Guo W, Lin X, Yan F, Su B. Vertically ordered silica mesochannel modified bipolar electrode for electrochemiluminescence imaging analysis. ChemElectroChem. 2016;3:480–6.CrossRefGoogle Scholar
  33. 33.
    Wu SZ, Zhou ZY, Xu LR, Su B, Fang Q. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis. Biosens Bioelectron. 2014;53:148–53.CrossRefGoogle Scholar
  34. 34.
    Zhang J-D, Yu T, Li J-Y, Xu J-J, Chen H-Y. An ITO bipolar array for electrochemiluminescence imaging of H2O2. Electrochem Commun. 2014;49:75–8.CrossRefGoogle Scholar
  35. 35.
    Li H, Garrigue P, Bouffier L, Arbault S, Kuhn A, Sojic N. Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. Analyst. 2016. doi: 10.1039/C6AN00652C.Google Scholar
  36. 36.
    Fosdick SE, Berglund SP, Mullins CB, Crooks RM. Parallel screening of electrocatalyst candidates using bipolar electrochemistry. Anal Chem. 2013;85:2493–9.CrossRefGoogle Scholar
  37. 37.
    Fosdick SE, Berglund SP, Mullins CB, Crooks RM. Evaluating electrocatalysts for the hydrogen evolution reaction using bipolar electrode arrays: bi- and trimetallic combinations of Co, Fe, Ni, Mo, and W. ACS Catal. 2014;4:1332–9.CrossRefGoogle Scholar
  38. 38.
    Lin XM, Zheng LY, Gao GM, Chi YW, Chen GN. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. Anal Chem. 2012;84(18):7700–7.CrossRefGoogle Scholar
  39. 39.
    Renault C, Scida K, Knust KN, Fosdick SE, Crooks RM. Paper-based bipolar electrochemistry. J Electrochem Sci Technol. 2013;4:146–52.CrossRefGoogle Scholar
  40. 40.
    Feng Q-M, Pan J-B, Zhang H-R, Xu J-J, Chen H-Y. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun. 2014;50(75):10949–51.CrossRefGoogle Scholar
  41. 41.
    Liu R, Zhang C, Liu M. Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sens Actuators B Chem. 2015;216:255–62.CrossRefGoogle Scholar
  42. 42.
    Loget G, Kuhn A. Electric field-induced chemical locomotion of conducting objects. Nat Commun. 2011;2:535.CrossRefGoogle Scholar
  43. 43.
    Loget G, Kuhn A. Bipolar electrochemistry for cargo-lifting in fluid channels. Lab Chip. 2012;12:1967–71.CrossRefGoogle Scholar
  44. 44.
    Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N. Light-emitting electrochemical “swimmers”. Angew Chem Int Ed. 2012;51(45):11284–8.CrossRefGoogle Scholar
  45. 45.
    Bouffier L, Zigah D, Adam C, Sentic M, Fattah Z, Manojlovic D, et al. Lighting up redox propulsion with luminol electrogenerated chemiluminescence. ChemElectroChem. 2014;1:95–8.CrossRefGoogle Scholar
  46. 46.
    Sentic M, Arbault S, Goudeau B, Manojlovic D, Kuhn A, Bouffier L, et al. Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chem Commun. 2014;50:10202–5.CrossRefGoogle Scholar
  47. 47.
    Loget G, Roche J, Kuhn A. True bulk synthesis of Janus objects by bipolar electrochemistry. Adv Mater. 2012;24:5111–6.CrossRefGoogle Scholar
  48. 48.
    Sentic M, Arbault S, Bouffier L, Manojlovic D, Kuhn A, Sojic N. 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chem Sci. 2015;6:4433–7.CrossRefGoogle Scholar
  49. 49.
    de Poulpiquet A, Diez-Buitrago B, Milutinovic M, Goudeau B, Bouffier L, Arbault S, et al. Dual-color electrogenerated chemiluminescence from dispersions of conductive microbeads addressed by bipolar electrochemistry. ChemElectroChem. 2016;3:404–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut des Sciences MoléculairesUniversity of Bordeaux, Bordeaux INP, ENSCBPPessacFrance
  2. 2.CNRS, ISM, UMR 5255TalenceFrance

Personalised recommendations