Skip to main content
Log in

Voltammetric analysis of Pinus needles with physiological, phylogenetic, and forensic applications

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polyphenolic compounds are electrochemically active components of vegetal matter which were targeted under simple experimental conditions to produce voltammetric profiles characterizing the metabolite composition. Application to bivariate and multivariate chemometric techniques permits to discriminate the species and age of plant leaves, illustrated here for the case of six Pinus species from two different subgenera. Such responses, associated with the electrochemical oxidation of polyphenolic compounds (quercetin, gallic acid, ellagic acid, among others), define a voltammetric profile which varies systematically with the age of the leaves for the different species. The application of this methodology for phylogenetic studies, plant physiology, forensic science, and chemoecology is discussed.

Image of Pinus in a typical Mediterranean forest; Courtesy of the Botanic Garden of the University of Valencia

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fredrickson H. Applications of methods of chemical analysis in microbial taxonomy. Anal Bioanal Chem. 1992;343:47–8.

    Article  Google Scholar 

  2. Kirk H, Choi YH, Kim HK, Verpoorte R, Van der Meijden E. Comparing metabolomes: the chemical consequences of hybridization in plants. New Phytol. 2005;167:613–22.

    Article  CAS  Google Scholar 

  3. Humbert JF, Quiblier C, Gugger M. Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem. 2010;397:1723–32.

    Article  CAS  Google Scholar 

  4. Dell’Anna R, Lazzeri P, Frisanco M, Monti F, Malvezzi-Campeggi F, Gottardini E, et al. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal Bioanal Chem. 2009;394:1443–52.

    Article  Google Scholar 

  5. Sogawa K, Watanabe M, Sato K, Segawa S, Miyabe A, Murata S, et al. Rapid identification of microorganisms by mass spectrometry: improved performance by incorporation of in-house spectral data into a commercial database. Anal Bioanal Chem. 2012;403:1811–22.

    Article  CAS  Google Scholar 

  6. Serra O, Chatterjee S, Huang W, Stark RE. Mini-review: what nuclear magnetic resonance can tell us about protective tissues. Plant Sci. 2012;195:120–4.

    Article  CAS  Google Scholar 

  7. Price RA, Liston A, Strauss SH. Evolution, Phylogeny and Systematics of Pinus. In: Richardson DM, editor. Ecology and biogeography of Pinus. Cambridge: Cambridge Univ. Press; 1998. p. 49–68.

    Google Scholar 

  8. Richardson DM, Rundel PW. Ecology and biogeography of Pinus: an introduction. In: Richardson DM, editor. Ecology and Biogeography of Pinus. Cambridge: Cambridge Univ. Press; 1998. p. 3–46.

    Google Scholar 

  9. Farjon A. A natural history of conifers. Portland: Timber Press; 2008.

    Google Scholar 

  10. Li B, Shen YH, He YR, Zhang WD. Chemical constituents and biological activities of Pinus species. Chem Biodiver. 2013;10:2133–60.

    Article  CAS  Google Scholar 

  11. Rossbach M, Jayasekera R. Air pollution monitoring at the Environmental Specimen Bank of Germany: spruce and pine shoots as bioindicators. Anal Bioanal Chem. 1996;354:511–4.

    Article  CAS  Google Scholar 

  12. Robles C, Greff S, Pasqualini V, Garzino S, Bousquet-Mélou A, Fernandez C, et al. Phenols and flavonoids in Aleppo pine needles as bioindicators of air pollution. J Environ Qual. 2003;32:2265–71.

    Article  CAS  Google Scholar 

  13. Warren JM, Bassman JH, Mattinson DS, Fellman JK, Edwards GE, Robberech R. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa Quercus rubra and Pseudotsuga menziesii. J Photochem Photobiol B: Biol. 2002;66:125–33.

    Article  CAS  Google Scholar 

  14. Franich RA, Jakobsson E, Jensen S, Kroese HW, Kylin H. Development of non-destructive methods for the determination of airborne pollutants in pine needles: identification of trace constituents in radiata pine epicuticular wax. Anal Bioanal Chem. 1993;347:337–43.

    Article  CAS  Google Scholar 

  15. Hovorka J, Marshall GB. Determination of As, Cd, and Pb in epicuticular waxes of pine and spruce needles by ETAAS. Anal Bioanal Chem. 1997;358:635–40.

    Article  CAS  Google Scholar 

  16. Plümacher J, Renner I. Determination of volatile chlorinated hydrocarbons and trichloroacetic acid in conifer needles by headspace gas-chromatography. Anal Bioanal Chem. 1993;347:129–35.

    Article  Google Scholar 

  17. Kylin H, Nordstrand D, Sjödin A, Jensen S. Determination of chlorinated pesticides and PCB in pine needles—improved method for the monitoring of airborne organochlorine pollutants. Anal Bioanal Chem. 1996;356:62–9.

    Article  CAS  Google Scholar 

  18. Ratola N, Herbert P, Alves A. Microwave-assisted headspace solid-phase microextraction to quantify polycyclic aromatic hydrocarbons in pine trees. Anal Bioanal Chem. 2012;403:1761–9.

    Article  CAS  Google Scholar 

  19. Gernandt DS, López GG, Ortiz-García S, Liston A. Phylogeny and classification of Pinus. Taxon. 2005;54:29–42.

    Article  Google Scholar 

  20. Eckert AJ, Hall BD. Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses. Mol Phylogenet Evol. 2006;40:166–82.

    Article  CAS  Google Scholar 

  21. Almaraz-Abarca N, González-Elizondo MS, Tena-Flores JA, Ávila-Reyes JA, Herrera-Corral J, Naranjo-Jiménez N. Foliar flavonoids distinguish Pinus leiophylla and Pinus chihuanuana (Coniferales: Pinaceae). Proc Biol Soc. 2006;119:426–36.

    Article  Google Scholar 

  22. Doménech-Carbó A, Ibars AM, Prieto-Mossi J, Estrelles E, Scholz F, Cebrián-Torrejón G, et al. Electrochemistry-based chemotaxonomy in plants using the voltammetry of microparticles methodology. New J Chem. 2015;39:7421–8.

    Article  Google Scholar 

  23. F. Scholz, B. Meyer, in Electroanalytical Chemistry, A Series of Advances (Eds.: A.J. Bard, I. Rubinstein), Marcel Dekker, New York, 1998, pp. 1–87

  24. Doménech-Carbó A, Labuda J, Scholz F. Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem. 2013;8:609–31.

    Google Scholar 

  25. F. Scholz, U. Schröder, R. Gulabowski, A. Doménech-Carbó, Electrochemistry of Immobilized Particles and Droplets, 2nd edit. Springer, Berlin-Heidelberg, 2014

  26. Korotkova EI, Karbainov YA, Avramchik OA. Investigation of antioxidant and catalytic properties of some biologically active substances by voltammetry. Anal Bioanal Chem. 2003;375:465–8.

    CAS  Google Scholar 

  27. Brainina KZ, Ivanova AV, Sharafutdinova EN, Lozovskaya EL, Shkarina EI. Potentiometry as a method of antioxidant activity investigation. Talanta. 2007;71:13–8.

    Article  CAS  Google Scholar 

  28. Bordonaba JG, Terry LA. Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: towards a rapid sensor for antioxidant capacity and individual antioxidants. Talanta. 2012;90:38–45.

    Article  CAS  Google Scholar 

  29. Vilela D, González MC, Escarpa A. Gold-nanosphere formation using food sample endogenous polyphenols for in-vitro assessment of antioxidant capacity. Anal Bioanal Chem. 2012;404:341–9.

    Article  CAS  Google Scholar 

  30. Glod BK, Kiersztyn I, Piszcz P. Total antioxidant potential assay with cyclic voltammetry and/or differential pulse voltammetry measurements. J Electroanal Chem. 2014;719:24–9.

    Article  CAS  Google Scholar 

  31. Komorsky-Lovrić Š, Novak I. Estimation of antioxidative properties of tea leaves by abrasive stripping electrochemistry using paraffin-impregnated graphite electrode. Collect Czech Chem Commun. 2009;74:1467–75.

    Article  Google Scholar 

  32. Komorsky-Lovrić Š, Novak I. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes. J Food Sci. 2011;76:C916–20.

    Article  Google Scholar 

  33. Doménech-Carbó A, Domínguez I, Hernández-Muñoz P, Gavara R. Electrochemical tomato (Solanum lycopersicum L.) characterization using contact probe in situ voltammetry. Food Chem. 2015;127:318–25.

    Article  Google Scholar 

  34. Domínguez I, Doménech-Carbó A. Screening and authentication of tea varieties based on microextraction-assisted voltammetry of microparticles. Sens Actuator B. 2015;210:491–9.

    Article  Google Scholar 

  35. Doménech-Carbó A, Gavara R, Hernández-Muñoz P, Domínguez I. Contact probe voltammetry for in situ monitoring of the reactivity of phenolic tomato (Solanum lycopersicum L.) compounds with ROS. Talanta. 2015;144:1207–15.

    Article  Google Scholar 

  36. Doménech-Carbó A, Cebrián-Torrejón G, Lopes-Souto A, Martins de Moraes M, Jorge-Kato M, Fechine-Tavares J, et al. Electrochemical ecology: VIMP monitoring of plant defense against external stressors. RSC Adv. 2015;5:61006–11.

    Article  Google Scholar 

  37. Scholz F, Komorsky-Lovrić Š, Lovrić M. A new access to Gibbs energies of transfer of ions across liquid|liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions. Electrochem Commun. 2000;2:112–8.

    Article  CAS  Google Scholar 

  38. Scholz F, Gulaboski R. Gibbs energies of transfer of chiral anions across the interface water/chiral organic solvent determined with the help of three-phase electrodes. Faraday Discuss. 2005;6:16–28.

    CAS  Google Scholar 

  39. Gunckel S, Santander P, Cordano G, Ferreira J, Muñoz S, Nuñez-Vergara LJ, et al. Antioxidant activity of gallates: an electrochemical study in aqueous media. Chem Biol Interact. 1998;114:45–59.

    Article  CAS  Google Scholar 

  40. Janeiro P, Oliveira-Brett AM. Solid state electrochemical oxidation mechanisms of Morin in aqueous media. Electroanalysis. 2005;17:733–8.

    Article  CAS  Google Scholar 

  41. Timbola AK, de Souza CD, Giacomelli C, Spinelli A. Electrochemical oxidation of quercetin in hydro-alcoholic solution. J Braz Chem Soc. 2006;17:139–48.

    Article  CAS  Google Scholar 

  42. Novak I, Seruga M, Komorsky-Lovric S. Electrochemical characterization of epigallocatechin gallate using square-wave voltammetry. Electroanalysis. 2009;21:1019–25.

    Article  CAS  Google Scholar 

  43. Ramesova S, Sokolova R, Tarabek J, Degano I. The oxidation of luteolin, the natural flavonoid dye. Electrochim Acta. 2013;110:646–54.

    Article  CAS  Google Scholar 

  44. Lovric M, Scholz F. A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem. 1997;1:108–13.

    Article  CAS  Google Scholar 

  45. Oldham KB. Voltammetry at a three-phase junction. J Solid State Electrochem. 1998;2:367–77.

    Article  CAS  Google Scholar 

  46. Lovric M, Scholz F. A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem. 1999;3:172–5.

    Article  CAS  Google Scholar 

  47. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F. Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. J Solid State Electrochem. 2000;4:314–24.

    Article  Google Scholar 

  48. Doménech-Carbó A, Doménech-Carbó MT. Chronoamperometric study of proton transfer/electron transfer in solid state electrochemistry of organic dyes. J Solid State Electrochem. 2006;10:949–58.

    Article  Google Scholar 

  49. Doménech-Carbó A, Doménech-Carbó MT. In situ AFM study of proton-assisted electrochemical oxidation/reduction of microparticles of organic dyes. Electrochem Commun. 2008;10:1238–41.

    Article  Google Scholar 

  50. Scampicchio M, Mannino S, Zima J, Wang J. Chemometrics on microchips: towards the classification of wines. Electroanalysis. 2005;17:1215–21.

    Article  CAS  Google Scholar 

  51. Klaus W. Mediterranean pines and their history. Plant Syst Evol. 1989;162:133–63.

    Article  Google Scholar 

  52. Wang XR, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AD. Phylogenetic Relationships of Eurasian Pines (Pinus, Pinaceae) Based on Chloroplast RBCL, MATK, RPL20-RPS18 Spacer, and TRNV Intron Sequences. Am J Bot. 2000;86:1742–53.

    Article  Google Scholar 

  53. Virtanen V, Korpelainen H, Kostamo K. Forensic botany: usability of bryophyte material in forensic studies. Forensic Sci Int. 2007;172:161–3.

    Article  CAS  Google Scholar 

  54. Wiltshire PEJ, Hawksworth DL, Webb JA, Edwards KJ. Palynology and mycology provide separate classes of probative evidence from the same forensic samples: a rape case from southern England. Forensic Sci Int. 2014;244:186–95.

    Article  Google Scholar 

  55. Schnitzler J, Jungblut TP, Feicht C, Köfferlein M, Langebartels C, Heller W, et al. UV-B induction of flavonoid biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Trees. 1997;11:162–8.

    Google Scholar 

  56. Rousseaux MC, Ballaré CL, Scopel AL, Searles PS, Caldwell WW. Solar UV-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina). Oecologia. 1998;116:528–35.

    Article  Google Scholar 

  57. Ratola N, Homem V, Silva JA, Araújo R, Amigo JM, Santos L, et al. Biomonitoring of pesticides by pine needles—chemical scoring, risk of exposure, levels and trends. Sci Total Environ. 2014;476:114–24.

    Article  Google Scholar 

  58. Sensula B, Wilczyński S, Opala M. Tree Growth and climate relationship: dynamics of Scots Pine (Pinus sylvestris L.) growing in the near-source region of the combined heat and power plant during the development of the pro-ecological strategy in Poland. Water, Air, Soil Pollut.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Ethics declarations

The authors declare compliance with ethical standards.

Conflict of interest

No existing conflict of interest related to the procedures, contents, etc. of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Miranda, A.S., König, P., Kahlert, H. et al. Voltammetric analysis of Pinus needles with physiological, phylogenetic, and forensic applications. Anal Bioanal Chem 408, 4943–4952 (2016). https://doi.org/10.1007/s00216-016-9588-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9588-7

Keywords

Navigation