Skip to main content
Log in

HPLC-UV method for evaluation of inhibitors of plasma amine oxidase using derivatization of an aliphatic aldehyde product with TRIS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Plasma amine oxidase (PAO), which is also designated as semicarbazide-sensitive amine oxidase (SSAO), copper-containing amine oxidase 3 (AOC3), or vascular adhesion protein-1 (VAP-1), catalyzes the oxidative deamination of primary amines to aldehydes using copper and a quinone as cofactors. Because it participates in the transmigration of inflammatory cells through the blood vessels into the tissue, PAO is attributed an important role in inflammatory diseases. Therefore, inhibitors of this enzyme could lead to new therapeutics for the treatment of inflammation-related conditions. Assays for the evaluation of PAO inhibitors usually measure the conversion of benzylamine to benzaldehyde by UV spectroscopy. We have developed a test system with the new substrate 6-(5-phenyl-2H-tetrazol-2-yl)hexan-1-amine, monitoring the formation of the enzyme product 6-(5-phenyl-2H-tetrazol-2-yl)hexanal by reversed phase HPLC with UV detection. Since this compound only eluted with poor peak shape due to hydrate formation in the aqueous mobile phase, it was derivatized with tris(hydroxymethyl)aminomethane (TRIS) under mild conditions to an oxazolidine prior HPLC analysis. The validation of the method revealed that the new substrate was bound with higher affinity to PAO and converted with higher velocity than the standard substrate benzylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Finney J, Moon HJ, Ronnebaum T, Lantz M, Mure M. Human copper-dependent amine oxidases. Arch Biochem Biophys. 2014;546:19–32.

    Article  CAS  Google Scholar 

  2. Lewinsohn R. Mammalian monoamine-oxidizing enzymes, with special reference to benzylamine oxidase in human tissues. Braz J Med Biol Res. 1984;17:223–56.

    CAS  Google Scholar 

  3. Stolen CM, Yegutkin GG, Kurkijärvi R, Bono P, Alitalo K, Jalkanen S. Origins of serum semicarbazide-sensitive amine oxidase. Circ Res. 2004;95:50–7.

    Article  CAS  Google Scholar 

  4. Boomsma F, Bhaggoe UM, van der Houwen AM, van den Meiracker AH. Plasma semicarbazide-sensitive amine oxidase in human (patho)physiology. Biochim Biophys Acta. 2003;1647:48–54.

    Article  CAS  Google Scholar 

  5. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta. 2003;1647:193–9.

    Article  CAS  Google Scholar 

  6. Yraola F, Albericio F, Royo M. Inhibition of VAP1: quickly gaining ground as an anti-inflammatory therapy. ChemMedChem. 2007;2:173–4.

    Article  CAS  Google Scholar 

  7. Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol. 2005;5:760–71.

    Article  CAS  Google Scholar 

  8. Dunkel P, Balogh B, Meleddu R, Maccioni E, Gyires K, Mátyus P. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1: a patent survey. Expert Opin Ther Pat. 2011;21:1453–71.

    Article  CAS  Google Scholar 

  9. Dunkel P, Gelain A, Barlocco D, Haider N, Gyires K, Sperlágh B, et al. Semicarbazide-sensitive amine oxidase/vascular adhesion protein 1: recent developments concerning substrates and inhibitors of a promising therapeutic target. Curr Med Chem. 2008;15:1827–39.

    Article  CAS  Google Scholar 

  10. Feurle J, Schwelberger HG. Porcine plasma amine oxidase has a broad substrate specificity and efficiently converts histamine. Inflamm Res. 2007;56 Suppl 1:S55–6.

    Article  CAS  Google Scholar 

  11. Marti L, Abella A, De La Cruz X, García-Vicente S, Unzeta M, Carpéné C, et al. Exploring the binding mode of semicarbazide-sensitive amine oxidase/VAP-1: identification of novel substrates with insulin-like activity. J Med Chem. 2004;47:4865–74.

    Article  CAS  Google Scholar 

  12. Yraola F, García-Vicente S, Fernandez-Recio J, Albericio F, Zorzano A, Marti L, et al. New efficient substrates for semicarbazide-sensitive amine oxidase/VAP-1 enzyme: analysis by SARs and computational docking. J Med Chem. 2006;49:6197–208.

    Article  CAS  Google Scholar 

  13. Schwelberger HG, Feurle J. Characterization of human plasma amine oxidase. Inflamm Res. 2008;57 Suppl 1:S51–2.

    Article  CAS  Google Scholar 

  14. Tabor CW, Tabor H, Rosenthal SM. Purification of amine oxidase from beef plasma. J Biol Chem. 1954;208:645–61.

    CAS  Google Scholar 

  15. Neumann R, Hevey R, Abeles RH. The action of plasma amine oxidase on beta-haloamines. Evidence for proton abstraction in the oxidative reaction. J Biol Chem. 1975;250:6362–7.

    CAS  Google Scholar 

  16. Artico M, Silvestri R, Stefancich G, Avigliano L, Di Giulio A, Maccarone M, et al. Aromatic hydrazides as specific inhibitors of bovine serum amine oxidase. Eur J Med Chem. 1992;27:219–28.

    Article  CAS  Google Scholar 

  17. Lee Y, Ling KQ, Lu X, Silverman RB, Shepard EM, Dooley DM, et al. 3-Pyrrolines are mechanism-based inactivators of the quinone-dependent amine oxidases but only substrates of the flavin-dependent amine oxidases. J Am Chem Soc. 2002;124:12135–43.

    Article  CAS  Google Scholar 

  18. Jeon HB, Sun G, Sayre LM. Inactivation of bovine plasma amine oxidase by 4-aryloxy-2-butynamines and related analogs. Biochim Biophys Acta. 2003;1647:343–54.

    Article  CAS  Google Scholar 

  19. Agostinelli E, Palmigiani P, Vedova LD, Tempera G, Belli F, Seiler N. Interaction of bovine serum amine oxidase with the polyamine oxidase inactivator MDL 72527. Biochem Biophys Res Commun. 2006;340:840–4.

    Article  CAS  Google Scholar 

  20. Tipton KF, Davey G, Motherway M. Monoamine oxidase assays. In: Taylor GP, Sullivan JP, editors. Current Protocols in Pharmacology. New York: Wiley; 2000. p. 3.6.1–3.6.42.

    Google Scholar 

  21. Li H, Luo W, Lin J, Lin Z, Zhang Y. Assay of plasma semicarbazide-sensitive amine oxidase and determination of its endogenous substrate methylamine by liquid chromatography. J Chromatogr B. 2004;810:277–82.

    Article  CAS  Google Scholar 

  22. Hayes BE, Clarke DE. Semicarbazide-sensitive amine oxidase activity in streptozotocin diabetic rats. Res Commun Chem Pathol Pharmacol. 1990;69:71–83.

    CAS  Google Scholar 

  23. Inoue T, Morita M, Tojo T, Nagashima A, Moritomo A, Miyake H. Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment. Bioorg Med Chem. 2013;21:3873–81.

    Article  CAS  Google Scholar 

  24. Weiss HG, Klocker J, Labeck B, Nehoda H, Aigner F, Klingler A, et al. Plasma amine oxidase: a postulated cardiovascular risk factor in nondiabetic obese patients. Metabolism. 2003;52:688–92.

    Article  CAS  Google Scholar 

  25. Holt A, Sharman DF, Baker GB, Palcic MM. A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal Biochem. 1997;244:384–92.

    Article  CAS  Google Scholar 

  26. Bligt-Lindén E, Pihlavisto M, Szatmári I, Otwinowski Z, Smith DJ, Lázár L, et al. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode. J Med Chem. 2013;56:9837–48.

    Article  Google Scholar 

  27. Nurminen EM, Pihlavisto M, Lázár L, Pentikäinen U, Fülöp F, Pentikäinen OT. Novel hydrazine molecules as tools to understand the flexibility of vascular adhesion protein-1 ligand-binding site: toward more selective inhibitors. J Med Chem. 2011;54:2143–54.

    Article  CAS  Google Scholar 

  28. Nurminen EM, Pihlavisto M, Lázár L, Szakonyi Z, Pentikäinen U, Fülöp F, et al. Synthesis, in vitro activity, and three-dimensional quantitative structure-activity relationship of novel hydrazine inhibitors of human vascular adhesion protein-1. J Med Chem. 2010;53:6301–15.

    Article  CAS  Google Scholar 

  29. Olivieri A, Tipton K. Inhibition of bovine plasma semicarbazide-sensitive amine oxidase by caffeine. J Biochem Mol Toxicol. 2011;25:26–7.

    Article  CAS  Google Scholar 

  30. Shepard EM, Smith J, Elmore BO, Kuchar JA, Sayre LM, Dooley DM. Towards the development of selective amine oxidase inhibitors. Mechanism-based inhibition of six copper containing amine oxidases. Eur J Biochem. 2002;269:3645–58.

    Article  CAS  Google Scholar 

  31. Di Paolo ML, Lunelli M, Scarpa M, Rigo A. Phosphonium compounds as new and specific inhibitors of bovine serum amine oxidase. Biochem J. 2004;384:551–8.

    Article  Google Scholar 

  32. Maula SM, Salminen T, Kaitaniemi S, Nymalm Y, Smith DJ, Jalkanen S. Carbohydrates located on the top of the "cap" contribute to the adhesive and enzymatic functions of vascular adhesion protein-1. Eur J Immunol. 2005;35:2718–27.

    Article  CAS  Google Scholar 

  33. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem. 1997;253:162–8.

    Article  CAS  Google Scholar 

  34. Foot JS, Yow TT, Schilter H, Buson A, Deodhar M, Findlay AD, et al. PXS-4681A, a potent and selective mechanism-based inhibitor of SSAO/VAP-1 with anti-inflammatory effects in vivo. J Pharmacol Exp Ther. 2013;347:365–74.

    Article  CAS  Google Scholar 

  35. Schilter HC, Collison A, Russo RC, Foot JS, Yow TT, Vieira AT, et al. Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration. Respir Res. 2015;16:42. doi:10.1186/s12931-015-0200-z.

    Article  Google Scholar 

  36. Schwelberger HG, Feurle. Luminometric determination of amine oxidase activity. J Inflamm Res. 2007;56 Suppl 1:S53–4.

    Article  CAS  Google Scholar 

  37. Ling KQ, Sayre LM. Discovery of a sensitive, selective, and tightly binding fluorogenic substrate of bovine plasma amine oxidase. J Org Chem. 2009;74:339–50.

    Article  CAS  Google Scholar 

  38. Airenne TT, Nymalm Y, Kidron H, Smith DJ, Pihlavisto M, Salmi M, et al. Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. Protein Sci. 2005;14:1964–74.

    Article  CAS  Google Scholar 

  39. Salmi M, Jalkanen S. Ectoenzymes controlling leukocyte traffic. Eur J Immunol. 2012;42:284–92.

    Article  CAS  Google Scholar 

  40. Yegutkin GG, Salminen T, Koskinen K, Kurtis C, McPherson MJ, Jalkanen S, et al. A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol. 2004;34:2276–85.

    Article  CAS  Google Scholar 

  41. Terwege T, Hanekamp W, Garzinsky D, König S, Koch O, Lehr M (2016) ω-Imidazolyl- and ω-tetrazolylalkylcarbamates as inhibitors of fatty acid amide hydrolase (FAAH): biological activity and in vitro metabolic stability. ChemMedChem. 2016;11:429–43.

    Article  CAS  Google Scholar 

  42. Fabian J, Lehr M. Normal-phase HPLC and HPLC-MS studies of the metabolism of a cytosolic phospholipase A2α inhibitor with activated ketone group by rat liver microsomes. J Pharm Biomed Anal. 2007;43:601–5.

    Article  CAS  Google Scholar 

  43. Fritsche A, Schulze Elfringhoff A, Fabian J, Lehr M. 1-(2-Carboxyindol-5-yloxy)propan-2-ones as inhibitors of human cytosolic phospholipase A2α: synthesis, biological activity, metabolic stability, and solubility. Bioorg Med Chem. 2008;16:3489–500.

    Article  CAS  Google Scholar 

  44. Tomori E. Pre-column fluorescence derivatization of peptides containing arginine aldehyde moiety in high-performance liquid chromatography. Chromatographia. 1993;36:105–9.

    Article  CAS  Google Scholar 

  45. Borch RF, Getman KM. Base-catalyzed hydrolysis of 4-hydroperoxycyclophosphamide: evidence for iminocyclophosphamide as an intermediate. J Med Chem. 1984;27:485–90.

    Article  CAS  Google Scholar 

  46. Maresh JJ, Crowe SO, Ralko AA, Aparece MD, Murphy CM, Krzeszowiec M, et al. Facile one-pot synthesis of tetrahydroisoquinolines from amino acids via hypochlorite-mediated decarboxylation and Pictet–Spengler condensation. Tetrahedron Lett. 2014;55:5047–51.

    Article  CAS  Google Scholar 

  47. Bubb WA, Berthon HA, Kuchel PW. Tris buffer reactivity with low-molecular-weight aldehydes: NMR characterization of the reactions of glyceraldehyde-3-phosphate. Bioorg Chem. 1995;23:119–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lehr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 905 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mergemeier, K., Lehr, M. HPLC-UV method for evaluation of inhibitors of plasma amine oxidase using derivatization of an aliphatic aldehyde product with TRIS. Anal Bioanal Chem 408, 4799–4807 (2016). https://doi.org/10.1007/s00216-016-9572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9572-2

Keywords

Navigation