Perullini M, Bilmes SAA, Jobbagy M. Cerium oxide nanoparticles: structure, applications, reactivity, and eco-toxicology. In: Nanomaterial: a danger or a promise? 2012, 307–333. doi:10.1007/978-1-4471-4213-3_12.
Deshpande S, Patil S, Kuchibhatla SVNT, Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett. 2005;87(13):133113/133111–3. doi:10.1063/1.2061873.
Article
Google Scholar
Schwabe F, Schulin R, Rupper P, Rotzetter A, Stark W, Nowack B. Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J Nanopart Res. 2014;16(10):1–11. doi:10.1007/s11051-014-2668-8.
CAS
Article
Google Scholar
Collin B, Auffan M, Johnson AC, Kaur I, Keller AA, Lazareva A, et al. Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ Sci Nano. 2014;1(6):533–48. doi:10.1039/C4EN00149D.
CAS
Article
Google Scholar
Cassee FR, Van BEC, Singh C, Green D, Muijser H, Weinstein J, et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol. 2011;41(3):213–29.
Article
Google Scholar
Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, et al. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics. 2011;3(8):816–22. doi:10.1039/c1mt00049g.
Article
Google Scholar
Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, et al. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol. 2015;49(5):2921–8. doi:10.1021/es5060226.
CAS
Article
Google Scholar
Wang Q, Ma X, Zhang W, Pei H, Chen Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics. 2012;4(10):1105–12. doi:10.1039/c2mt20149f.
CAS
Article
Google Scholar
Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol. 2010;44(19):7315–20. doi:10.1021/es903891g.
CAS
Article
Google Scholar
Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, et al. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano. 2012;6(11):9943–50. doi:10.1021/nn303543n.
CAS
Article
Google Scholar
Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, et al. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics. 2015;7(3):466–77. doi:10.1039/C4MT00343H.
CAS
Article
Google Scholar
Degueldre C, Favarger PY. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloid Surf A. 2003;217(1–3):137–42. doi:10.1016/S0927-7757(02)00568-X.
CAS
Article
Google Scholar
Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26(7):1362–71. doi:10.1039/c0ja00098a.
CAS
Article
Google Scholar
Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem (Washington, DC, U S). 2011;83(24):9361–9. doi:10.1021/ac201952t.
CAS
Article
Google Scholar
Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem. 2012;31(1):115–21. doi:10.1002/etc.719.
CAS
Article
Google Scholar
Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP, Higgins CP, et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ Sci Technol. 2012;46(22):12272–80. doi:10.1021/es301787d.
CAS
Article
Google Scholar
Tuoriniemi J, Cornelis G, Hasselloev M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem. 2012;84(9):3965–72. doi:10.1021/ac203005r.
CAS
Article
Google Scholar
Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47(24):14315–23. doi:10.1021/es403558c.
CAS
Article
Google Scholar
Loeschner K, Brabrand MSJ, Sloth JJ, Larsen EH. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS. Anal Bioanal Chem. 2014;406(16):3845–51. doi:10.1007/s00216-013-7431-y.
CAS
Article
Google Scholar
Mitrano DM, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ Sci Nano. 2014;1(3):248–59. doi:10.1039/c3en00108c.
CAS
Article
Google Scholar
Peters RJB, Rivera ZH, van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014;406(16):3875–85. doi:10.1007/s00216-013-7571-0.
CAS
Google Scholar
Dan Y, Shi H, Stephan C, Liang X. Rapid analysis of titanium dioxide nanoparticles in sunscreens using single particle inductively coupled plasma-mass spectrometry. Microchem J. 2015;122:119–26. doi:10.1016/j.microc.2015.04.018.
CAS
Article
Google Scholar
Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol. 2015;49(5):3007–14. doi:10.1021/es506179e.
CAS
Article
Google Scholar
Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere. 2016;144:148–53. doi:10.1016/j.chemosphere.2015.07.081.
CAS
Article
Google Scholar
Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods. Anal Bioanal Chem Ahead Print. 2016. doi:10.1007/s00216-016-9432-0.
Google Scholar
Loeschner K, Navratilova J, Kobler C, Molhave K, Wagner S, der KF V, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405(25):8185–95. doi:10.1007/s00216-013-7228-z.
CAS
Article
Google Scholar
Degueldre C, Favarger PY, Rosse R, Wold S. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta. 2006;68(3):623–8. doi:10.1016/j.talanta.2005.05.006.
CAS
Article
Google Scholar
Degueldre C, Favarger PY, Wold S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal Chim Acta. 2006;555(2):263–8. doi:10.1016/j.aca.2005.09.021.
CAS
Article
Google Scholar
Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL, van Agterveld D. Accumulation of gold nanoparticles in Brassic juncea. Int J Phytorem. 2007;9(3):197–206. doi:10.1080/15226510701376026.
CAS
Article
Google Scholar
Hineman A, Stephan C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J Anal At Spectrom. 2014;29(7):1252–7. doi:10.1039/c4ja00097h.
CAS
Article
Google Scholar
Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(24):9361–9. doi:10.1021/ac201952t.
CAS
Article
Google Scholar
McDowell EM, Trump BF. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med. 1976;100(8):405–14.
CAS
Google Scholar
Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol. 2014;48(17):10291–300. doi:10.1021/es502422v.
CAS
Article
Google Scholar
Ma Y, Zhang P, Zhang Z, He X, Li Y, Zhang J, et al. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology. 2015;9(2):262–70. doi:10.3109/17435390.2014.921344.
CAS
Article
Google Scholar
Ma Y, Zhang P, Zhang Z, He X, Zhang J, Ding Y, et al. Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol. 2015;49(17):10667–74. doi:10.1021/acs.est.5b02761.
CAS
Article
Google Scholar