Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 30, pp 8603–8610 | Cite as

Comparison of isothermal helicase-dependent amplification and PCR for the detection of Mycobacterium tuberculosis by an electrochemical genomagnetic assay

  • Susana Barreda-García
  • Rebeca Miranda-Castro
  • Noemí de-los-Santos-Álvarez
  • Arturo J. Miranda-Ordieres
  • M. Jesús Lobo-CastañónEmail author
Research Paper
Part of the following topical collections:
  1. Isothermal Nucleic Acid Amplification in Bioanalysis

Abstract

Methods for the early and sensitive detection of pathogenic bacteria suited to low-resource settings could impact diagnosis and management of diseases. Helicase-dependent isothermal amplification (HDA) is an ideal tool for this purpose, especially when combined with a sequence-specific detection method able to improve the selectivity of the assay. The implementation of this approach requires that its analytical performance is shown to be comparable with the gold standard method, polymerase chain reaction (PCR). In this study, we optimize and compare the asymmetric amplification of an 84-base-long DNA sequence specific for Mycobacterium tuberculosis by PCR and HDA, using an electrochemical genomagnetic assay for hybridization-based detection of the obtained single-stranded amplicons. The results indicate the generalizability of the magnetic platform with electrochemical detection for quantifying amplification products without previous purification. Moreover, we demonstrate that under optimal conditions the same gene can be amplified by either PCR or HDA, allowing the detection of as low as 30 copies of the target gene sequence with acceptable reproducibility. Both assays have been applied to the detection of M. tuberculosis in sputum, urine, and pleural fluid samples with comparable results. Simplicity and isothermal nature of HDA offer great potential for the development of point-of-care devices.

Graphical Abstract

Comparative evaluation of isothermal helicase-dependent amplification and PCR for electrochemical detection of Mycobacterium tuberculosis

Keywords

Genomagnetic assay Helicase Isothermal amplification PCR Mycobacterium tuberculosis 

Notes

Acknowledgments

This research has been supported by the Spanish Ministerio de Economía y Competitividad (project CTQ2012-31157), the European Regional Development Fund, and Principado de Asturias government (FC-15-GRUPIN14-025). RMC thanks Principado de Asturias government and FICYT for a Clarín post-doctoral contract. We thank Dr. Juan José Palacios-Gutiérrez from Hospital Universitario de Asturias for providing the clinical samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. 1.
    World Health Organization. Global tuberculosis report 2015 (http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf). Last accessed 15 February 2016.
  2. 2.
    Dheda K, Ruhwald M, Theron G, Peter J, Yam WC. Respirology. 2013;18:217–32.CrossRefGoogle Scholar
  3. 3.
    Wilson ML. Clin Infect Dis. 2011;52:1350–5.CrossRefGoogle Scholar
  4. 4.
    Piersimoni C, Scarparo C. J Clin Microbiol. 2003;41:5355–65.CrossRefGoogle Scholar
  5. 5.
    Ioannidis P, Papaventsis D, Karabela S, Nikolaou S, Panagi M, Raftopoulou E, et al. J Clin Microbiol. 2011;49:3068–70.CrossRefGoogle Scholar
  6. 6.
    Asiello PJ, Baeumner AJ. Lab Chip. 2011;11:1420–30.CrossRefGoogle Scholar
  7. 7.
    Niemz A, Ferguson TM, Boyle DS. Trends Biotechnol. 2011;29:240–50.CrossRefGoogle Scholar
  8. 8.
    Li J, Macdonald J. Biosens Bioelectron. 2015;64:196–211.CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Chen F, Li Q, Wang L, Fan C. Chem Rev. 2015;115:12491–545.CrossRefGoogle Scholar
  10. 10.
    Aryan E, Makvandi M, Farajzadeh A, Huygen K, Bifani P, Mousavi S-L, et al. Microbiol Res. 2010;165:211–20.CrossRefGoogle Scholar
  11. 11.
    Manage DP, Chui L, Pilarski L. Microfluid Nanofluid. 2013;14:731–41.CrossRefGoogle Scholar
  12. 12.
    Roskos K, Hickerson AI, Lu H-W, Ferguson TM, Shinde DN, Klaue Y, et al. PLoS One. 2013;8, e69355.CrossRefGoogle Scholar
  13. 13.
    Boyle DS, McNerney R, Low HT, Leader BT, Pérez-Osorio AC, Meyer JC, et al. PLoS One. 2014;9:e103091.CrossRefGoogle Scholar
  14. 14.
    Ng BYC, Xiao W, West NP, Wee EJH, Wang Y, Trau M. Anal Chem. 2015;87:10613–8.CrossRefGoogle Scholar
  15. 15.
    Ng BYC, Wee EJH, West NP, Trau M. Sci Rep. 2015;5:15027.CrossRefGoogle Scholar
  16. 16.
    Shin Y, Perera AP, Tang WY, Fu DL, Liu Q, Sheng JK, et al. Biosens Bioelectron. 2015;68:30–396.Google Scholar
  17. 17.
    Ng BYC, Wee EJH, West NP, Trau M (2015) ACS sens DOI:  10.1021/acssensors.5b00171
  18. 18.
    Motré A, Kong R, Li Y. J Microbiol Meth. 2011;84:343–5.CrossRefGoogle Scholar
  19. 19.
    Torres-Chavolla E, Alocilja E. Biosens Bioelectron. 2011;26:4614–8.CrossRefGoogle Scholar
  20. 20.
    Ao W, Aldous S, Woodruff E, Hicke B, Rea L, Kreiswirth B, et al. J Clin Microbiol. 2012;50:2433–40.CrossRefGoogle Scholar
  21. 21.
    Barreda-García S, González-Álvarez MJ, de-los-Santos-Álvarez N, Palacios-Gutiérrez JJ, Miranda-Ordieres AJ, Lobo-Castañón MJ. Biosens Bioelectron. 2015;68:122–8.CrossRefGoogle Scholar
  22. 22.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Nucleic Acids Res. 2000;28:e63.CrossRefGoogle Scholar
  23. 23.
    Vincent M, Xu Y, Kong H. EMBO Rep. 2004;5:795–800.CrossRefGoogle Scholar
  24. 24.
    Poepenburg O, Williams C, Stemple DL, Armes NA. PLoS Biol. 2006;4:1115–21.Google Scholar
  25. 25.
    Patterson AS, Hsieh K, Soh HT, Plaxco KW. Trends Biotech. 2013;31:704–12.CrossRefGoogle Scholar
  26. 26.
    Moura-Melo S, Miranda-Castro R, de-los-Santos Álvarez N, Miranda-Ordieres AJ, Ribeiro J, Fonseca R, et al. Anal Chem. 2015;87:8547–54.CrossRefGoogle Scholar
  27. 27.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Nucleic Acid Res. 2012;40:e115.CrossRefGoogle Scholar
  28. 28.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. BMC Bioinformatics. 2012;13:134.CrossRefGoogle Scholar
  29. 29.
    Zuker M. Nucleic Acid Res. 2003;31:3406–15.CrossRefGoogle Scholar
  30. 30.
    Jezewska MJ, Lucius AL, Bujalowski W. Biochem. 2005;44:3877–90.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Susana Barreda-García
    • 1
  • Rebeca Miranda-Castro
    • 1
  • Noemí de-los-Santos-Álvarez
    • 1
  • Arturo J. Miranda-Ordieres
    • 1
  • M. Jesús Lobo-Castañón
    • 1
    Email author
  1. 1.Dpto. Química Física y AnalíticaUniversidad de OviedoOviedoSpain

Personalised recommendations