Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays

Abstract

Nanoelectrode arrays (NEAs) are increasingly applied for a variety of electroanalytical applications; however, very few studies dealt with the use of NEAs as an electrochemical generator of electrogenerated chemiluminescence (ECL). In the present study, arrays of nanodisc and nanoband electrodes with different dimensions and inter-electrode distances were fabricated by e-beam lithography on a polycarbonate layer deposited on boron-doped diamond (BDD) substrates. In particular, NEAs with 16 different geometries were fabricated on the same BDD sample substrate obtaining a multiple nanoelectrode and ultramicroelectrode array platform (MNEAP). After electrochemical and morphological characterization, the MNEAP was used to capture simultaneously with a single image the characteristic behaviour of ECL emission from all the 16 arrays. Experiments were performed using Ru(bpy)3 2+ as the ECL luminophore and tri-n-propylamine (TPrA) as the co-reactant. With a relatively limited number of experiments, such an imaging procedure allowed to study the role that geometrical and mechanistic parameters play on ECL generation at NEAs. In particular, at high concentrations of TPrA, well-separated individual ECL spots or bands revealed an ECL signal which forms a pattern matching the nanofabricated structure. The analysis of the imaging data indicated that the thickness of the ECL-emitting zone at each nanoelectrode scales inversely with the co-reactant concentration, while significantly stronger ECL signals were detected for NEAs operating under overlap conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bard AJ. Electrogenerated chemiluminescence. New York: M. Dekker; 2004.

    Google Scholar 

  2. 2.

    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    CAS  Article  Google Scholar 

  3. 3.

    Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.

    CAS  Article  Google Scholar 

  4. 4.

    Hesari M, Ding Z. Review—Electrogenerated chemiluminescence: light years ahead. J Electrochem Soc. 2016;163:H3116–31.

    CAS  Article  Google Scholar 

  5. 5.

    Rubinstein I, Bard AJ. Electrogenerated chemiluminescence. 37. Aqueous ECL systems based on Ru(2,2′-bipyridine)3 2+ and oxalate or organic acids. J Am Chem Soc. 1981;103:512–6.

    CAS  Article  Google Scholar 

  6. 6.

    Jameison F, Sanchez RI, Dong L, Leland JK, Yost D, Martin MT. Electrochemiluminescence-based quantitation of classical clinical chemistry analytes. Anal Chem. 1996;68:1298–302.

    CAS  Article  Google Scholar 

  7. 7.

    Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem. 1991;37(9):1534–9.

    CAS  Google Scholar 

  8. 8.

    Yang H, Leland JK, Yost D, Massey RJ. Electrochemiluminescence: a new diagnostic and research tool. Nat Biotechnol. 1994;12:193–4.

    CAS  Article  Google Scholar 

  9. 9.

    Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;46:421–4.

    CAS  Article  Google Scholar 

  10. 10.

    Yuan Y, Han S, Hu L, Parveen S, Xu G. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence. Electrochim Acta. 2012;82:484–92.

    CAS  Article  Google Scholar 

  11. 11.

    Kebede N, Francis PS, Barbante GJ, Hogan CF. Electrogenerated chemiluminescence of tris(2,2[prime or minute] bipyridine)ruthenium(II) using common biological buffers as co-reactant, pH buffer and supporting electrolyte. Analyst. 2015;140:7142–5.

    CAS  Article  Google Scholar 

  12. 12.

    Collinson MM, Pastore P, Maness KM, Wightman RM. Electrochemiluminescence interferometry at microelectrodes. J Am Chem Soc. 1994;116:4095–6.

    CAS  Article  Google Scholar 

  13. 13.

    Amatore C, Pebay C, Servant L, Sojic N, Szunerits S, Thouin L. Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. ChemPhysChem. 2006;7:1322–7.

    CAS  Article  Google Scholar 

  14. 14.

    Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci. 2014;5:2568–72.

    CAS  Article  Google Scholar 

  15. 15.

    Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69. The tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited. A new route involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124:14478–85.

    CAS  Article  Google Scholar 

  16. 16.

    Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo[a]pyrene metabolites. Anal Chem. 2007;79:1897–906.

    CAS  Article  Google Scholar 

  17. 17.

    Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem. 2011;83:6698–703.

    CAS  Article  Google Scholar 

  18. 18.

    Sardesai N, Pan S, Rusling J. Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles. Chem Commun. 2009: 4968–4970.

  19. 19.

    Rusling JF, Hvastkovs EG, Hulla DO, Schenkman JB. Biochemical applications of ultrathin films of enzymes, polyions and DNA. Chem Commun. 2008. doi:10.1039/B709121B

  20. 20.

    Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc. 2009;131:6088–9.

    CAS  Article  Google Scholar 

  21. 21.

    Penner RG, Hebe MJ, Longin TL, Lewis NS. Fabrication and use of nanometer-sized electrodes in electrochemistry. Science. 1990;250:1118–21.

    CAS  Article  Google Scholar 

  22. 22.

    Smith CP, White HS. Theory of the voltammetric response of electrodes of submicrometer dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte. Anal Chem. 1993;65:3342–53.

    Google Scholar 

  23. 23.

    Dickinson EJ, Compton RG. Diffuse double layer at nanoelectrodes. J Phys Chem Lett. 2009;113:17585–9.

    CAS  Article  Google Scholar 

  24. 24.

    Menon VP, Martin CR. Fabrication and evaluation of nanoelectrode ensembles. Anal Chem. 1995;67:1929–8.

    Article  Google Scholar 

  25. 25.

    Baker WS, Crooks RM. Independent geometrical and electrochemical characterization of arrays of nanometer-scale electrodes. J Phys Chem B. 1998;102:10041–6.

    CAS  Article  Google Scholar 

  26. 26.

    Ongaro M, Ugo P. Bioelectroanalysis with nanoelectrode ensembles and arrays. Anal Bioanal Chem. 2013;405:3715–29.

    CAS  Article  Google Scholar 

  27. 27.

    Arrigan DWM. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst. 2004;129:1157–65.

    CAS  Article  Google Scholar 

  28. 28.

    Ongaro M, Ugo P. Sensor arrays: arrays of micro- and nanoelectrodes. In: Moretto LM, Kalcher K, editors. Environmental analysis by electrochemical sensors and biosensors, v. 1: fundamentals. New York: Springer; 2014. p. 583–613.

    Google Scholar 

  29. 29.

    Ugo P, Moretto LM, Bellomi S, Menon VP, Martin CR. Ion-exchange voltammetry at polymer film-coated nanoelectrode ensembles. Anal Chem. 1996;68:4160–5.

    CAS  Article  Google Scholar 

  30. 30.

    Moretto LM, Pepe N, Ugo P. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles. Talanta. 2004;62:1055–60.

    CAS  Article  Google Scholar 

  31. 31.

    Cao L, Yan PS, Sun KN, Kirk DW. Tailor-made gold brush nanoelectrode ensembles modified with L-cysteine for the detection of daunorubicine. Electrochim Acta. 2008;53:8144–8.

    CAS  Article  Google Scholar 

  32. 32.

    Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis. 2012;24:798–806.

    CAS  Article  Google Scholar 

  33. 33.

    Chen A, Tsao MJ, Chuang JF, Lin C. Electrochemical determination of verapamil with a microchip embedded with gold nanoelectrode ensemble. Electrochim Acta. 2013;89:700–7.

    CAS  Article  Google Scholar 

  34. 34.

    Brunetti B, Ugo P, Moretto LM, Martin CR. Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. J Electroanal Chem. 2000;491:166–74.

    CAS  Article  Google Scholar 

  35. 35.

    Amatore C, Saveant JM, Tessier DJ. Charge transfer at partially blocked surfaces—a model for the case of microscopic active and inactive sites. J Electroanal Chem. 1983;147:39–51.

    CAS  Article  Google Scholar 

  36. 36.

    Pozzi Mucelli S, Zamuner M, Tormen M, Stanta G, Ugo P. Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Bioses Bioelectron. 2008;23:1900–3.

    Article  Google Scholar 

  37. 37.

    Viswanathan S, Rani C, Delerue-Matis C. Ultrasensitive detection of ovarian cancer marker using immunoliposomes and gold nanoelectrodes. Anal Chim Acta. 2012;726:79–8438.

    CAS  Article  Google Scholar 

  38. 38.

    Silvestrini M, Fruk L, Ugo P. Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection. Biosens Bioelectron. 2013;40:265–70.

    CAS  Article  Google Scholar 

  39. 39.

    Lee HJ, Beriet C, Ferrigno R, Girault HH. Cyclic voltammetry at a regular microdisc electrode array. J Electroanal Chem. 2001;502:138–45.

    CAS  Article  Google Scholar 

  40. 40.

    Davies TJ, Compton RG. The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem. 2005;585:63–82.

    CAS  Article  Google Scholar 

  41. 41.

    Davies TJ, Ward-Jones S, Banks CE, del Campo FJ, Mas R, Munoz FX, et al. The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem. 2005;585:51–62.

    CAS  Article  Google Scholar 

  42. 42.

    Henstridge MC, Compton RG. Mass transport to micro and nanoelectrodes and their arrays: a review. Chem Rec. 2012;12:63–71.

    CAS  Article  Google Scholar 

  43. 43.

    Guo J, Lindner E. Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal Chem. 2009;81:130–8.

    CAS  Article  Google Scholar 

  44. 44.

    Amatore C, Oleinick AI, Svir I. Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach. Anal Chem. 2009;81:4397–405.

    CAS  Article  Google Scholar 

  45. 45.

    Oleksii S, Oleinick A, Svir I, Amatore C. Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro- and nanodisk electrodes. ChemElectroChem. 2015;2:1279–91.

    Article  Google Scholar 

  46. 46.

    Bartlet JE, Drew SM, Wightman RM. Electrochemiluminescence at band array electrodes. J Electrochem Soc. 1992;139:70–4.

    Article  Google Scholar 

  47. 47.

    Fiaccabrino GC, Koudelka-Hep M, Hsueh Y-T, Collins SD, Smith RL. Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium in water at carbon microelectrodes. Anal Chem. 1998;70:4157–61.

    CAS  Article  Google Scholar 

  48. 48.

    Amatore C, Fosset B, Maness KM, Wightman RM. Theory of electrochemical luminescence at double band electrodes. An examination of “steady-state” diffusion at ultramicroelectrodes. Anal Chem. 1993;65:2311–6.

    CAS  Article  Google Scholar 

  49. 49.

    Chidsey CE, Feldman BJ, Lundgren C, Murray RW. Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use. Anal Chem. 1986;58:601–7.

    CAS  Article  Google Scholar 

  50. 50.

    Chow K-F, Mavré F, Crooks JA, Chang B-Y, Crooks RM. A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc. 2009;131:8364–5.

    CAS  Article  Google Scholar 

  51. 51.

    Sentic M, Arbault S, Bouffier L, Manojlovic D, Kuhn A, Sojic N. 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chem Sci. 2015;6:4433–7.

    CAS  Article  Google Scholar 

  52. 52.

    Chovin A, Garrigue P, Vinatier P, Sojic N. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging. Anal Chem. 2004;76:357–64.

    CAS  Article  Google Scholar 

  53. 53.

    Szunerits S, Tam JM, Thouin L, Amatore C, Walt DR. Spatially resolved electrochemiluminescence on an array of electrode tips. Anal Chem. 2003;75:4382–8.

    CAS  Article  Google Scholar 

  54. 54.

    Habtamu HB, Sentic M, Silvestrini M, De Leo L, Not T, Arbault S, et al. A sensitive electrochemiluminescence immunosensor for celiac disease diagnosis based on nanoelectrode ensembles. Anal Chem. 2015;87:12080–7.

    CAS  Article  Google Scholar 

  55. 55.

    Sandison ME, Cooper JM. Nanofabrication of electrode arrays by electron beam and nanoimprint lithographies. Lab Chip. 2006;6:1020–5.

    CAS  Article  Google Scholar 

  56. 56.

    Moretto LM, Tormen M, De Leo M, Carpentiero A, Ugo P. Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology. 2011;22:185305.

    CAS  Article  Google Scholar 

  57. 57.

    Honda K, Yoshimura M, Rao TN, Fujishima A. Electrogenerated chemiluminescence of the ruthenium tris(2,2′)bipyridyl/amines system on a boron-doped diamond electrode. J Phys Chem B. 2003;107:1653–63.

    CAS  Article  Google Scholar 

  58. 58.

    Hondaa K, Yamaguchi Y, Yamanaka Y, Yoshimatsu M, Fukuda Y, Fujishima A. Hydroxyl radical-related electrogenerated chemiluminescence reaction for a ruthenium tris(2,2)bipyridyl/co-reactants system a boron-doped diamond electrodes. Electrochim Acta. 2005;51:588–97.

    Article  Google Scholar 

  59. 59.

    Xiao L, Streeter I, Wildgoose GG, Compton RG. Fabricating random arrays of boron doped diamond nano-disc electrodes: towards achieving maximum faradaic current with minimum capacitive charging. Sensors Actuators B Chem. 2008;133:18–127.

    Article  Google Scholar 

  60. 60.

    Hees J, Hoffmann R, Kriele A, Smirnov W, Obloh H, Glorer K, et al. Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano. 2011;5:3339–46.

    CAS  Article  Google Scholar 

  61. 61.

    Virgilio F, Prasciolu M, Ugo P, Tormen M. Development of electrochemical biosensors by e-beam lithography for medical diagnostics. Microelectron Eng. 2013;111:320–4.

    CAS  Article  Google Scholar 

  62. 62.

    Godino N, Borrisé X, Muñoz FX, del Campo FJ, Compton RG. Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C. 2009;113:11119–25.

    CAS  Article  Google Scholar 

  63. 63.

    Zoski CG, Wijesinghe M. Electrochemistry at ultramicroelectrode arrays and nanoelectrode ensembles of macro- and ultramicroelectrode dimensions. Isr J Chem. 2010;50:347–59.

    CAS  Article  Google Scholar 

  64. 64.

    Fernandez JL, Wijesinghe M, Zoski CG. Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions. Anal Chem. 2015;87:1066–74.

    CAS  Article  Google Scholar 

  65. 65.

    Bowling RJ, McCreery RL, Pharr CM, Engstrom RC. Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence. Anal Chem. 1989;61:2763–6.

    CAS  Article  Google Scholar 

  66. 66.

    Engstrom RC, Pharr CM, Koppang MD. Visualization of the edge effect with electrogenerated chemiluminescence. J Electroanal Chem. 1987;221:251–5.

    CAS  Article  Google Scholar 

  67. 67.

    Pharr CM, Engstrom RC, Klancke J, Unzelman PL. Determination of microscopic electrode kinetics with electrogenerated chemiluminescence imaging. Electroanalysis. 1990;2:217–21.

    CAS  Article  Google Scholar 

  68. 68.

    Kanoufi F, Zu Y, Bard AJ. Homogeneous oxidation of trialkylamines by metal complexes and its impact on electrogenerated chemiluminescence in the trialkylamine/Ru(bpy)3 2+ system. J Phys Chem B. 2001;105:210–6.

    CAS  Article  Google Scholar 

  69. 69.

    Klymenko OV, Svir I, Amatore C. A new approach for the simulation of electrochemiluminescence (ECL). ChemPhysChem. 2013;14:2237–50.

    CAS  Article  Google Scholar 

  70. 70.

    Zu Y, Bard AJ. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem. 2000;72:3223–32.

    CAS  Article  Google Scholar 

  71. 71.

    Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem. 2001;73:2153–6.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

MS acknowledges the financial supports from the Ministry of Science and Technological Development (Republic of Serbia) and from the French Foreign Ministry (Bourse d’Excellence Eiffel). FV, MT and PU thank MIUR (Rome) for the support by project PRIN 2010 AXENJ8.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Ugo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Analytical & Bioanalytical Chemistry (PDF 378 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sentic, M., Virgilio, F., Zanut, A. et al. Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal Bioanal Chem 408, 7085–7094 (2016). https://doi.org/10.1007/s00216-016-9504-1

Download citation

Keywords

  • Nanoelectrode
  • Array
  • Electrogenerated chemiluminescence
  • Boron-doped diamond
  • Microscopy
  • Imaging