Skip to main content

Ageing of resin from Pinus species assessed by infrared spectroscopy

Abstract

Resins obtained from Pinus genus species have been widely used in very different fields throughout history. As soon as the resins are secreted, molecular changes start altering their chemical, mechanical and optical properties. The ageing processes are complex, and the chemical and structural changes associated with resin degradation are not yet fully known. Many questions still remain open, for instance changes happening in pimaranes, one of the two diterpenoid constituents of the resin. A systematic study of the ageing process of Pinus resins is done through Fourier transform infrared spectroscopy (FTIR) using chemical standards and complementing the obtained results with gas chromatography coupled to mass spectrometry (GC/MS) analysis when necessary. Moreover, long-term degradation processes are also investigated through the analysis of a selection of dated historical resins. This study overcomes the limitations of GC/MS and brings new information about the reactions and interactions between molecules during Pinus resin ageing processes. It also provides information about which bonds are affected and unaffected, and these can be used as specific markers of the degradation and of the resins themselves.

Changes in the IR spectral features due to the Pinus resin ageing processes

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Richardson DM. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  2. Belgacem MN, Gandini A. Monomers, polymers and composites from renewable resources. Oxford: Elsevier; 2008.

    Google Scholar 

  3. Fiebach K, Grimm D. Resins, natural. In: Ullmann’s encyclopedia of industrial chemistry. 7th edn. Weinheim: Wiley; 2007.

  4. Langenheim JH. Plant resins: chemistry, evolution, ecology, and ethnobotany. Cambridge: Timber; 2003.

    Google Scholar 

  5. Mills JS, White R. Organic chemistry of museum objects. New York: Butterworth-Heinemann; 1999.

    Google Scholar 

  6. Mills JS, White R. Natural resins of art and archaeology their sources, chemistry, and identification. Stud Conserv. 1977;22(1):12–31.

    CAS  Google Scholar 

  7. Colombini MP, Modugno F. Organic mass spectrometry in art and archaeology. Pisa: Wiley; 2009.

    Book  Google Scholar 

  8. Pastorova II, van der Berg KJ, Boon JJ, Verhoeven JW. J Anal Appl Pyrol. 1997;43:41–57.

    CAS  Article  Google Scholar 

  9. Osete-Cortina L, Doménech-Carbó MT, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F. J Chromatogr A. 2004;1024:187–94.

    CAS  Article  Google Scholar 

  10. Berg KJ, Boon JJ, Pastorova II, Spetter LF. J Mass Spectrom. 2000;35(4):512–33.

    Article  Google Scholar 

  11. Steigenberger G, Herm C. Anal Bioanal Chem. 2011;401(6):1771–84.

    CAS  Article  Google Scholar 

  12. Abdel-Ghani M, Edwards HGM, Stern B, Janaway R. Spectrochim Acta A. 2009;73:566–75.

    CAS  Article  Google Scholar 

  13. Chiavari G, Fabbri D, Prati S. Chromatographia. 2002;55(9–10):611–6.

    CAS  Article  Google Scholar 

  14. Osete-Cortina L, Doménech-Carbó MT. J Chromatogr A. 2005;1065(2):265–78.

    CAS  Article  Google Scholar 

  15. Anderson KB, Winans RE. Anal Chem. 1991;63:2901–8.

    CAS  Article  Google Scholar 

  16. Prati S, Smith S, Chiavari G. Chromatographia. 2004;59:227–31.

    CAS  Google Scholar 

  17. Osete-Cortina L, Doménech-Carbó MT. J Anal Appl Pyrolysis. 2006;76:144–53.

    CAS  Article  Google Scholar 

  18. Derrick MR, Stulik D, Landry JM. Infrared spectroscopy in conservation science. Los Angeles: The Getty Conservation Institute; 1999.

  19. Beltran V, Salvadó N, Butí S, Cinque G. Microchem J. 2015;118:115–23.

    CAS  Article  Google Scholar 

  20. Font J, Salvadó N, Butí S, Enrich J. Anal Chim Acta. 2007;598(1):119–27.

    CAS  Article  Google Scholar 

  21. Bertrand L, Robinet L, Cohen SX, Sandt C, Le Hô AS, Soulier B, et al. Anal Bioanal Chem. 2011;399(9):3025–32.

    CAS  Article  Google Scholar 

  22. Robinson N, Evershed RP, Higgs WJ, Jerman K, Eglinton G. Analyst (Cambridge, U K). 1987;112:637–44.

    CAS  Article  Google Scholar 

  23. Derrick M. J Am Inst Conserv. 1989;1:43–56.

    Article  Google Scholar 

  24. Derrick M, Stulik DC, Landry JM, Bouffard SP. J Am Inst Conserv. 1992;2:225–36.

    Article  Google Scholar 

  25. Daher C, Paris C, Le Hô A, Bellot-Gurlet L, Échard J. J Raman Spectrosc. 2010;41(11):1494–9.

    Article  Google Scholar 

  26. Brody RH, Edwards HGM, Pollard M. Biopolymers. 2002;67(2):129–41.

    CAS  Article  Google Scholar 

  27. Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G. Anal Chim Acta. 2000;407:261–74.

    CAS  Article  Google Scholar 

  28. Prati S, Sciutto G, Mazzeo R, Torri C, Fabbri D. Anal Bioanal Chem. 2011;399:3081–91.

    CAS  Article  Google Scholar 

  29. Doménech-Carbó MT. Anal Chim Acta. 2008;621(2):109–39.

    Article  Google Scholar 

  30. Scalarone D, van der Horst J, Boon JJ, Chiantore O. J Mass Spectrom. 2003;38:607–17.

    CAS  Article  Google Scholar 

  31. European Forest Genetic Resources Programme (EUFORGEN). http://www.euforgen.org/distribution-maps/ (2015). Accessed 14 Jan 2015.

  32. Merrifield MP. Medieval and Renaissance treatises on the arts of painting: original texts with English translations. New York: Dover; 1999.

    Google Scholar 

  33. Eastlake CL. Methods and materials of painting of the great schools and masters. New York: Dover; 2001.

    Google Scholar 

  34. Smith CS, Hawthorne JG. Mappae Clavicula: a little key to the world of medieval techniques. Philadelphia: American Philosophical Society; 1974.

    Google Scholar 

  35. Thornton J. J Am Inst Conserv. 1998;37(1):3–22.

    Google Scholar 

  36. Dardes K, Rothe A. The structural conservation of panel paintings: proceedings of a Symposium at the J. Paul Getty Museum, 24–28 April 1995. Los Angeles: Getty Conservation Institute; 1998.

  37. Jones R. Carbon with two heteroatoms with at least one carbon-to-heteroatom multiple link, vol 5. In: Katritzky AR, Taylor RJK, editors. Comprehensive organic functional groups transformations II. Cambridge: Elsevier; 2005.

    Google Scholar 

  38. Flett M St C. J Chem Soc. 1951;962–7.

  39. Bratoz S, Hadzi D, Sheppard N. Spectrochim Acta. 1956;8:249–81.

    CAS  Article  Google Scholar 

  40. Bellamy LJ. The infra-red spectra of complex molecules. London: Springer; 1975.

    Book  Google Scholar 

  41. Blout ER, Fields M, Karplus R. J Am Chem Soc. 1948;70(1):194–8.

    CAS  Article  Google Scholar 

  42. Hadzi D, Sheppard N. P R Soc A. 1953;216:247–66.

    CAS  Article  Google Scholar 

  43. Hadzi D, Pintar M. Spectrochim Acta. 1958;12:162–88.

    CAS  Article  Google Scholar 

  44. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and Raman characteristic frequencies of organic molecules. London: Academic; 1991.

    Google Scholar 

  45. Katritzky AR. Q Rev, Chem Soc. 1959;13:353–73.

    CAS  Article  Google Scholar 

  46. Arrabal C, Cortijo M, Fernandez de Simon B, Garcia Vallejo MC, Cadahía E. Biochem Syst Ecol. 2005;33:1007–16.

    CAS  Article  Google Scholar 

  47. Arrabal C, Cortijo M, Fernández de Simón B, García-Vallejo MC, Cadahía E. Holzforschung. 2002;56(3):261–6.

    CAS  Article  Google Scholar 

  48. Rezzi S, Bighelli A, Castola V, Casanova J. Ind Crop Prod. 2005;21(1):71–9.

    CAS  Article  Google Scholar 

  49. Mosini V, Samperi R. Phytochemistry. 1985;24(4):859–61.

    CAS  Article  Google Scholar 

  50. Joye Jr NM, Lawrence RV. J Chem Eng Data. 1967;12(2):279–82.

    CAS  Article  Google Scholar 

  51. Gref R. Eur J of Forest Pathol. 1987;17(4–5):227–30.

    CAS  Article  Google Scholar 

  52. Gören AC, Bilsel G, Öztürk AH, Topçu G. Nat Prod Commun. 2010;11:1729–32.

    Google Scholar 

  53. Azémard C, Vieillescazes C, Ménager M. Microchem J. 2014;112:137–49.

    Article  Google Scholar 

  54. Doménech-Carbó MT, Osete-Cortina L, de la Cruz CJ, Bolívar-Galiano F, Romero-Noguera J, Fernández-Vivas MA, et al. Anal Bioanal Chem. 2006;385(7):1265–80.

    Article  Google Scholar 

  55. Romero-Noguera J, Bolívar-Galiano FC, Ramos-López JM, Fernández-Vivas MA, Martín-Sánchez I. Biodeteriorat Biodegrad. 2008;62(4):427–33.

    CAS  Article  Google Scholar 

  56. Scalarone D, Lazzari M, Chiantore O. J Anal Appl Pyrol. 2002;64:345–61.

    CAS  Article  Google Scholar 

  57. Ménager M, Azémard C, Vieillescazes C. Microchem J. 2014;114:32–41.

    Article  Google Scholar 

  58. Ménager M, Perraud A, Vieillescazes C. Archéosciences. 2012;37:7–17.

    Google Scholar 

  59. Tirat S, Deganod I, Echard JP, Lattuati-Derieux A, Lluveras-Tenorio A, Marie A, et al. Microchem J. 2016;126:200–13.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support received for the development of this study from MINECO (Spain), grant MAT2013-41127-R and Generalitat de Catalunya, grant 2014SGR-581.

We would like to thank the Centre de Restauració de Bens Mobles de Catalunya (CRBMC) for their help with the chromatographic analysis and for supplying the artwork samples. Also we would like to thank David Bertran Chavarria, curator of Jardí Botànic de Barcelona, for supplying the fresh resin samples and the Economic Botany Collection of the Royal Botanic Gardens, Kew, in London, for supplying dated ancient resins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nati Salvadó.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beltran, V., Salvadó, N., Butí, S. et al. Ageing of resin from Pinus species assessed by infrared spectroscopy. Anal Bioanal Chem 408, 4073–4082 (2016). https://doi.org/10.1007/s00216-016-9496-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9496-x

Keywords

  • Diterpenic resin
  • IR spectroscopy
  • Pinus resin
  • Ageing
  • Abietanes
  • Pimaranes