Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays

Abstract

Colorimetric biosensors for the detection of analytes with the naked eye are required in environmental monitoring, point-of-care diagnostics, and analyses in resources constrained settings, where detection instruments may not be available. However, instrument-based detection methods are usually more adequate for detecting small variations in the signal compared to naked-eye detection schemes, and consequently the limit of detection of the latter is usually higher than the former. Here, we demonstrate that the limit of detection of colorimetric enzyme-linked immunoassays can be decreased several orders of magnitude when using naked-eye detection instead of a spectrophotometer for detecting the signal. The key step to lower the limit of detection is adding a small volume of chromogenic substrate during the signal generation step. This generates highly colored solutions that can be easily visualized with the naked eye and recorded with the camera of a mobile phone. The proposed method does not require expensive equipment or complex protocols to enhance the signal, and therefore it is a universal approach to lower the limit of detection of colorimetric enzyme-linked immunoassays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Paterson S, de la Rica R. Solution-based nanosensors for in-field detection with the naked eye. Analyst. 2015;140:3308–17.

    CAS  Article  Google Scholar 

  2. 2.

    Lee J-S, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed. 2007;46:4093–6.

    CAS  Article  Google Scholar 

  3. 3.

    Bui M-PN, Abbas A. Simple and rapid colorimetric detection of p-nitrophenyl substituent organophosphorous nerve agents. Sensors Actuators B Chem. 2015;207:370–4.

    CAS  Article  Google Scholar 

  4. 4.

    Chuang Y-C, Li J-C, Chen S-H, Liu T-Y, Kuo C-H, Huang W-T, et al. An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials. 2010;31:6087–95.

    CAS  Article  Google Scholar 

  5. 5.

    Parolo C, Merkoçi A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42:450–7.

    CAS  Article  Google Scholar 

  6. 6.

    de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7:821–4.

    Article  Google Scholar 

  7. 7.

    Grudpan K, Kolev SD, Lapanantnopakhun S, McKelvie ID, Wongwilai W. Applications of everyday IT and communications devices in modern analytical chemistry: a review. Talanta. 2015;136:84–94.

    CAS  Article  Google Scholar 

  8. 8.

    Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.

    CAS  Article  Google Scholar 

  9. 9.

    de la Rica R, Stevens MM. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protoc. 2013;8:1759–64.

    Article  Google Scholar 

  10. 10.

    Du J, Jiang L, Shao Q, Liu X, Marks RS, Ma J, et al. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small. 2013;9:1467–81.

    CAS  Article  Google Scholar 

  11. 11.

    Cecchin D, de la Rica R, Bain RES, Finnis MW, Stevens MM, Battaglia G. Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale. 2014;6:9559–62.

    CAS  Article  Google Scholar 

  12. 12.

    Liu D, Yang J, Wang H, Wang Z, Huang X, Wang Z, et al. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal Chem. 2014;86:5800–6.

    CAS  Article  Google Scholar 

  13. 13.

    Bui M-PN, Ahmed S, Abbas A. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett. 2015;15:6239–46.

    CAS  Article  Google Scholar 

  14. 14.

    Yu F, Du Y, Huang X, Ma H, Xu B, Adungo F, et al. Application of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for the detection of SFTSV-specific human IgG and IgM antibodies by indirect ELISA. Virol J. 2015;12:117.

    Article  Google Scholar 

  15. 15.

    Talar-wojnarowska R, Gasiorowska A, Olakowski M, Dranka-Bojarowska D, Lampe P, Smigielski J, et al. Utility of serum IgG, IgG4 and carbonic anhydrase II in distinguishing autoimmune pancreatitis from pancreatic cancer and chronic pancreatitis. Adv Med Sci. 2014;59:288–92.

    Article  Google Scholar 

  16. 16.

    San Miguel JF, Gutiérrez NC, Mateo G, Orfao A. Conventional diagnostics in multiple myeloma. Eur J Cancer. 2006;42:1510–9.

    Article  Google Scholar 

  17. 17.

    Zhang Q-Y, Chen H, Lin Z, Lin J-M. Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum α-fetoprotein. J Pharm Anal. 2012;2:130–5.

    CAS  Article  Google Scholar 

  18. 18.

    Vashist SK, Czilwik G, Van Oordt T, Von Stetten F, Zengerle R, Marion Schneider E, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30 min. Anal Biochem. 2014;456:32–7.

    CAS  Article  Google Scholar 

  19. 19.

    Nie H, Liu S, Yu R, Jiang J. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew Chem Int Ed. 2009;48:9862–6.

    CAS  Article  Google Scholar 

  20. 20.

    Gikunoo E, Abera A, Woldesenbet E. Achieving ultra-low detection limit using nanofiber labels for rapid disease detection. Adv Infect Dis. 2014;04:214–22.

    Article  Google Scholar 

  21. 21.

    Assays EI, Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9:7857–66.

    Article  Google Scholar 

  22. 22.

    Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7:273re1.

    Article  Google Scholar 

  23. 23.

    Soh JH, Lin Y, Rana S, Ying JY, Stevens MM. Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal Chem. 2015;87:7644–52.

    CAS  Article  Google Scholar 

  24. 24.

    Hazarika P, Jickells SM, Wolff K, Russell DA. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew Chem Int Ed. 2008;47:10167–70.

    CAS  Article  Google Scholar 

  25. 25.

    Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Da Cruz Vasconcellos F, Lowe CR. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors Actuators B Chem. 2014;196:156–60.

    CAS  Article  Google Scholar 

  26. 26.

    Masawat P, Harfield A, Namwong A. An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem. 2015;184:23–9.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Tom West Analytical Fellowship and an Analytical Chemistry Summer Studentship from the Analytical Chemistry Trust Fund, and by a research grant from Tenovus Scotland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberto de la Rica.

Ethics declarations

The authors state no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Connor, E.F., Paterson, S. & de la Rica, R. Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal Bioanal Chem 408, 3389–3393 (2016). https://doi.org/10.1007/s00216-016-9453-8

Download citation

Keywords

  • ELISA
  • Antibody
  • Biosensor
  • Immunosensor
  • Smartphone
  • Naked-eye detection