Skip to main content
Log in

Raman-based microarray readout: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use.

Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbulovic-Nad I, Lucente M, Sun Y, Zhang MJ, Wheeler AR, Bussmann M. Bio-microarray fabrication techniques - a review. Crit Rev Biotechnol. 2006;26(4):237–59.

    Article  CAS  Google Scholar 

  2. Seidel M, Niessner R. Automated analytical microarrays: a critical review. Anal Bioanal Chem. 2008;391(5):1521–44.

    Article  CAS  Google Scholar 

  3. Oyelaran O, McShane LM, Dodd L, Gildersleeve JC. Profiling human serum antibodies with a carbohydrate antigen microarray. J Proteome Res. 2009;8(9):4301–10.

    Article  CAS  Google Scholar 

  4. Staudt N, Muller-Sienerth N, Wright GJ. Development of an antigen microarray for high throughput monoclonal antibody selection. Biochem Biophys Res Commun. 2014;445(4):785–90.

    Article  CAS  Google Scholar 

  5. Wang L, Li PCH. Microfluidic DNA microarray analysis: a review. Anal Chim Acta. 2011;687(1):12–27.

    Article  CAS  Google Scholar 

  6. Yang J, Moraillon A, Siriwardena A, et al. Carbohydrate microarray for the detection of glycan-protein interactions using metal-enhanced fluorescence. Anal Chem. 2015;87(7):3721–8.

    Article  CAS  Google Scholar 

  7. Linman MJ, Yu H, Chen X, Cheng Q. Surface plasmon resonance imaging analysis of protein binding to a sialoside-based carbohydrate microarray. Methods Mol Biol. 2012;808:183–94.

    Article  CAS  Google Scholar 

  8. Wang Z, Gao J. Microarray-based study of carbohydrate-protein binding. Methods Mol Biol. 2010;600:145–53.

    Article  CAS  Google Scholar 

  9. Nagl S, Schaeferling M, Wolfbeis OS. Fluorescence analysis in microarray technology. Microchim Acta. 2005;151(1-2):1–21.

    Article  CAS  Google Scholar 

  10. Seidel M, Niessner R. Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem. 2014;406(23):5589–612.

    Article  CAS  Google Scholar 

  11. Linman MJ, Abbas A, Cheng QA. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst. 2010;135(11):2759–67.

    Article  CAS  Google Scholar 

  12. Gauglitz G. Direct optical sensors: principles and selected applications. Anal Bioanal Chem. 2005;381(1):141–55.

    Article  CAS  Google Scholar 

  13. Mehlmann M, Garvin AM, Steinwand M, Gauglitz G. Reflectometric interference spectroscopy combined with MALDI-TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives. Anal Bioanal Chem. 2005;382(8):1942–8.

    Article  CAS  Google Scholar 

  14. Meyer C, Busche S, Welsch N, Wegmann J, Gauglitz G, Albert K. Contact-angle, ellipsometric, and spin-diffusion solid-state nuclear magnetic resonance spectroscopic investigations of copolymeric stationary phases immobilized on SiO2 surfaces. Anal Bioanal Chem. 2005;382(7):1465–71.

    Article  CAS  Google Scholar 

  15. Proll G, Tschmelak J, Gauglitz G. Fully automated biosensors for water analysis. Anal Bioanal Chem. 2005;381(1):61–3.

    Article  CAS  Google Scholar 

  16. Ozkumur E, Lopez CA, Yalcin A, Connor JH, Chiari M, Unlu MS. Spectral reflectance imaging for a multiplexed, high-throughput, label-free, and dynamic biosensing platform. IEEE J Sel Top Quantum Electron. 2010;16(3):635–46.

    Article  CAS  Google Scholar 

  17. Yu XB, Xu DK, Cheng Q. Label-free detection methods for protein microarrays. Proteomics. 2006;6(20):5493–503.

    Article  CAS  Google Scholar 

  18. Liu DS, Shu WM. Microcantilever biosensors: probing biomolecular interactions at the nanoscale. Curr Org Chem. 2011;15(4):477–85.

    Article  CAS  Google Scholar 

  19. Tamayo J, Kosaka PM, Ruz JJ, San Paulo A, Calleja M. Biosensors based on nanomechanical systems. Chem Soc Rev. 2013;42(3):1287–311.

    Article  CAS  Google Scholar 

  20. Chen Z, Zhang XB, Yang RH, Zhu Z, Chen Y, Tan WH. Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale. 2011;3(5):1949–56.

    Article  CAS  Google Scholar 

  21. Dietzek B, Cialla D, Schmitt M, Popp J. Introduction to the fundamentals of Raman spectroscopy. In: Dieing T, Hollricher O, Toporski J, editors. Confocal Raman microscopy. Springer series in optical sciences, vol. 158. Berlin: Springer; 2011. p. 21–42.

    Chapter  Google Scholar 

  22. McClain BL, Clark SM, Gabriel RL, Ben-Amotz D. Educational applications of IR and Raman spectroscopy: a comparison of experiment and theory. J Chem Educ. 2000;77(5):654–60.

    Article  CAS  Google Scholar 

  23. Ball DW. Theory of Raman spectroscopy. Spectroscopy. 2001;16(11):32–4.

    Google Scholar 

  24. Kudelski A. Analytical applications of Raman spectroscopy. Talanta. 2008;76(1):1–8.

    Article  CAS  Google Scholar 

  25. Jentzsch PV, Kampe B, Ciobota V, Rosch P, Popp J. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim Acta A. 2013;115:697–708.

    Article  CAS  Google Scholar 

  26. Ivleva N, Huckele S, Weinzierl B, Niessner R, Haisch C, Baumann T. Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy. Anal Bioanal Chem. 2013;405(28):9071–84.

    Article  CAS  Google Scholar 

  27. Yang DT, Ying YB. Applications of Raman spectroscopy in agricultural products and food analysis: a review. Appl Spectrosc Rev. 2011;46(7):539–60.

    Article  Google Scholar 

  28. Yang DT, Mirescu NE, Zhou HB, et al. DFT study and quantitative detection by surface-enhanced Raman scattering (SERS) of ethyl carbamate. J Raman Spectrosc. 2013;44(11):1491–6.

    Article  CAS  Google Scholar 

  29. Yang DT, Zhou HB, Ying YB, Niessner R, Haisch C. Surface-enhanced Raman scattering for quantitative detection of ethyl carbamate in alcoholic beverages. Anal Bioanal Chem. 2013;405(29):9419–25.

    Article  CAS  Google Scholar 

  30. Young RJ. Analysis of composites using Raman and fluorescence microscopy - a review. J Microsc. 1997;185:199–205.

    Article  CAS  Google Scholar 

  31. Ali EMA, Edwards HGM. Analytical Raman spectroscopy in a forensic art context: the non-destructive discrimination of genuine and fake lapis lazuli. Spectrochim Acta A. 2014;121:415–9.

    Article  CAS  Google Scholar 

  32. Colomban P. The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J Raman Spectrosc. 2012;43(11):1529–35.

    Article  CAS  Google Scholar 

  33. Lin CC, Kuo MT, Chang HC. Review: Raman spectroscopy - a novel tool for noninvasive analysis of ocular surface fluid. J Med Biol Eng. 2010;30(6):343–54.

    Article  Google Scholar 

  34. Barton SJ, Hennelly BM, Ward T, Domijan K, Lowry J. A review of Raman for multicomponent analysis. Proc SPIE. 2014;9129:91290C.

    Article  CAS  Google Scholar 

  35. Diem M, Mazur A, Lenau K, et al. Molecular pathology via IR and Raman spectral imaging. J Biophotonics. 2013;6(11-12):855–86.

    Article  CAS  Google Scholar 

  36. Buijtels PCAM, Willemse-Erix HFM, Petit PLC, et al. Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol. 2008;46(3):961–5.

    Article  CAS  Google Scholar 

  37. Popp J, Harz A, Rosch P. Vibrational spectroscopy-a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A. 2009;75A(2):104–13.

    Article  CAS  Google Scholar 

  38. Schlucker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53(19):4756–95.

    Article  CAS  Google Scholar 

  39. Schlucker S. SERS microscopy: nanoparticle probes and biomedical applications. Chem Phys Chem. 2009;10(9-10):1344–54.

    Google Scholar 

  40. Kneipp J, Kneipp H, Kneipp K. SERS - a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev. 2008;37(5):1052–60.

    Article  CAS  Google Scholar 

  41. Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78(9):1667–70.

    Article  CAS  Google Scholar 

  42. Schlücker E, editor. Surface enhanced Raman spectroscopy. 1st ed. Weinheim: Wiley-VCH; 2010.

    Google Scholar 

  43. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter. 2002;14(18):R597–624.

    Article  CAS  Google Scholar 

  44. Fleischmann M, Hendra PJ, Mcquilla AJ. Raman spectra from electrode surfaces. J Chem Soc Chem Commun. 1973;3:80–1.

    Article  Google Scholar 

  45. Fleischmann M, Hendra PJ, Mcquilla AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–166.

  46. Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: part 1. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84(1):1–20.

    Article  CAS  Google Scholar 

  47. Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99(15):5215–7.

    Article  CAS  Google Scholar 

  48. Dieringer JA, McFarland AD, Shah NC, et al. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 2006;132:9–26.

    Article  CAS  Google Scholar 

  49. Zhao J, Sherry LJ, Schatz GC, Van Duyne RP. Molecular plasmonics: chromophore-plasmon coupling and single-particle nanosensors. IEEE J Sel Top Quantum Electron. 2008;14(6):1418–29.

    Article  CAS  Google Scholar 

  50. Wang YL, Schlucker S. Rational design and synthesis of SERS labels. Analyst. 2013;138(8):2224–38.

    Article  CAS  Google Scholar 

  51. Wang ZX, Ma LN. Gold nanoparticle probes. Coord Chem Rev. 2009;253(11-12):1607–18.

    Article  CAS  Google Scholar 

  52. Petryayeva E, Krull UJ. localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta. 2011;706(1):8–24.

    Article  CAS  Google Scholar 

  53. Asher SA. UV resonance Raman Spectroscopy for analytical, physical, and biophysical chemistry. Part 1. Anal Chem. 1993;65(2):A59–66.

    Google Scholar 

  54. Asher SA. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 2. Anal Chem. 1993;65(4):A201–10.

    Google Scholar 

  55. Cunningham D, Littleford RE, Smith WE, et al. Practical control of SERRS enhancement. Faraday Discuss. 2006;132:135–45.

    Article  CAS  Google Scholar 

  56. Kiefer W. Laser-excited resonance Raman Spectra of small molecules and ions - review. Appl Spectrosc. 1974;28(2):115–34.

    Article  CAS  Google Scholar 

  57. Ali EMA, Edwards HGM, Cox R. Forensic and security applications of a long-wavelength dispersive Raman system. J Raman Spectrosc. 2015;46(3):322–6.

    Article  CAS  Google Scholar 

  58. Suyama M, Kageyama A, Mizuno I, Kinoshita K, Muramatsu M, Yamamoto K. An electron bombardment CCD tube. Proc SPIE. 1997;3173:422–9.

    Article  Google Scholar 

  59. Carey PR, Froese A, Schneide H. Resonance Raman spectroscopic studies of 2,4-dinitrophenyl hapten-antibody interactions. Biochemistry. 1973;12(12):2198–208.

    Article  CAS  Google Scholar 

  60. Fagnano C, Fini G. Antibody-antigen interactions studied by means of Raman spectroscopy. J Raman Spectrosc. 1992;23(11):637–9.

    Article  CAS  Google Scholar 

  61. Fagnano C, Fini G. Antibody-antigen interactions studied by means of Raman spectroscopy. J Mol Struct. 1993;294:111–4.

    Article  CAS  Google Scholar 

  62. Kasili PM, Wabuyele MB, Vo-Dinh T. Antibody-based SERS diagnostics of Fhit protein without label. Nanobiotechnology. 2006;2(1-2):29–35.

    Article  CAS  Google Scholar 

  63. Xu SP, Ji XH, Xu WQ, Zhao B, Dou XM, Bai YB, Ozaki Y. Surface-enhanced Raman scattering studies on immunoassay. J Biomed Opt. 2005;10(3):031112-1–031112-12.

  64. Rohr TE, Cotton T, Fan N, Tarcha PJ. Immunoassay employing surface-enhanced Raman spectroscopy. Anal Biochem. 1989;182(2):388–98.

    Article  CAS  Google Scholar 

  65. Song CY, Wang ZY, Yang J, Zhang RH, Cui YP. Effects of solid substrate on the SERS-based immunoassay: a comparative study. J Raman Spectrosc. 2011;42(3):313–318.

  66. Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y. Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal Chem. 1997;69(8):1492–5.

    Article  CAS  Google Scholar 

  67. Allain LR, Vo-Dinh T. Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Anal Chim Acta. 2002;469(1):149–54.

    Article  CAS  Google Scholar 

  68. Kustner B, Gellner M, Schutz M, et al. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed. 2009;48(11):1950–3.

    Article  CAS  Google Scholar 

  69. Chen JW, Jiang JH, Gao X, Liu GK, Shen GL, Yu RQ. A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chem Eur J. 2008;14(27):8374–82.

    Article  CAS  Google Scholar 

  70. Wrzesien J, Graham D. Synthesis of SERS active nanoparticles for detection of biomolecules. Tetrahedron. 2012;68(4):1230–40.

    Article  CAS  Google Scholar 

  71. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002;297(5586):1536–40.

    Article  CAS  Google Scholar 

  72. Cao YC, Jin R, Nam J-M, Thaxton CS, Mirkin CA. Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc. 2003;125(48):14676–7.

    Article  CAS  Google Scholar 

  73. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105(4):1547–62.

    Article  CAS  Google Scholar 

  74. Herbath M, Papp K, Balogh A, Matko J, Prechl J. Exploiting fluorescence for multiplex immunoassays on protein microarrays. Methods Appl Fluoresc. 2014;2(3):032001-1–26.

  75. Cretich M, Reddington A, Monroe M, et al. Silicon biochips for dual label-free and fluorescence detection: application to protein microarray development. Biosens Bioelectron. 2011;26(9):3938–43.

    Article  CAS  Google Scholar 

  76. Ni J, Lipert RJ, Dawson GB, Porter MD. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem. 1999;71(21):4903–8.

    Article  CAS  Google Scholar 

  77. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ. Multianalyte immunoassay based on surface-enhanced Raman spectroscopy. J Raman Spectrosc. 2007;38(7):896–902.

    Article  CAS  Google Scholar 

  78. Thaxton CS, Rosi NL, Mirkin CA. Optically and chemically encoded nanoparticle materials for DNA and protein detection. MRS Bull. 2005;30(5):376–80.

    Article  CAS  Google Scholar 

  79. Li T, Liu DJ, Wang ZX. Screening kinase inhibitors with microarray-based Raman spectroscopic assay. Anal Methods. 2011;3(4):1003–7.

    Article  CAS  Google Scholar 

  80. Li T, Liu DJ, Wang ZX. Microarray-based Raman Spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens Bioelectron. 2009;24(11):3335–9.

    Article  CAS  Google Scholar 

  81. Xiao N, Wang C, Yu C. A self-referencing detection of microorganisms using surface enhanced Raman scattering nanoprobes in a test-in-a-tube platform. Biosensors. 2013;3(3):312–26.

    Article  CAS  Google Scholar 

  82. The Hitran Database (2015) http://www.cfa.harvard.edu/HITRAN/. Accessed 11 Nov 2015

  83. Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C. Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem. 2010;82(7):2766–72.

    Article  CAS  Google Scholar 

  84. Knauer M, Ivleva PN, Niessner R, Haisch C. Optimized surface-enhanced Raman scattering (SERS) colloids for the characterization of microorganisms. Anal Sci. 2010;26(7):761–6.

    Article  CAS  Google Scholar 

  85. Zhou HB, Yang DT, Mircescu N, et al. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim Acta. 2015;182(13-14):2259–66.

    Article  CAS  Google Scholar 

  86. Patel IS, Premasiri WR, Moir DT, Ziegler LD. Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc. 2008;39(11):1660–72.

    Article  CAS  Google Scholar 

  87. Schwarzmeier K, Knauer M, Ivleva NP, Niessner R, Haisch C. Bioaerosol analysis based on a label-free microarray readout method using surface-enhanced Raman scattering. Anal Bioanal Chem. 2013;405(16):5387–92.

    Article  CAS  Google Scholar 

  88. Knauer M, Ivleva NP, Niessner R, Haisch C. A flow-through microarray cell for the online SERS detection of antibody-captured E. coli bacteria. Anal Bioanal Chem. 2012;402(8):2663–7.

    Article  CAS  Google Scholar 

  89. Pahlow S, Kloss S, Blattel V, et al. Isolation and Enrichment of pathogens with a surface-modified aluminium chip for Raman spectroscopic applications. ChemPhysChem. 2013;14(15):3600–5.

    Article  CAS  Google Scholar 

  90. Kemmler M, Rodner E, Rosch P, Popp J, Denzler J. Automatic identification of novel bacteria using Raman spectroscopy and Gaussian processes. Anal Chim Acta. 2013;794:29–37.

    Article  CAS  Google Scholar 

  91. Kloss S, Kampe B, Sachse S, et al. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem. 2013;85(20):9610–6.

    Article  CAS  Google Scholar 

  92. Kusic D, Kampe B, Rosch P, Popp J. Identification of water pathogens by Raman microspectroscopy. Water Res. 2014;48:179–89.

    Article  CAS  Google Scholar 

  93. Vo-Dinh T, Yan F, Wabuyele MB. Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J Raman Spectrosc. 2005;36(6-7):640–7.

    Article  CAS  Google Scholar 

  94. Efrima S, Zeiri L. Understanding SERS of bacteria. J Raman Spectrosc. 2009;40(3):277–88.

    Article  CAS  Google Scholar 

  95. Hudson SD, Chumanov G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal Bioanal Chem. 2009;394(3):679–86.

    Article  CAS  Google Scholar 

  96. Culha M, Kahraman M, Cam D, Sayin I, Keseroglu K. Rapid identification of bacteria and yeast using surface-enhanced Raman scattering. Surf Interface Anal. 2010;42(6-7):462–5.

    Article  CAS  Google Scholar 

  97. Mircescu NE, Zhou H, Leopold N, et al. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Anal Bioanal Chem. 2014;406:3051–8.

    Article  CAS  Google Scholar 

  98. Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev. 2015;89:105–20.

  99. Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem. 2004;76(17):5198–202.

    Article  CAS  Google Scholar 

  100. Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem. 2004;76(1):40–7.

    Article  CAS  Google Scholar 

  101. Zhou H, Yang D, Ivleva NP, Mircescu NE, Schubert S, Niessner R, Wieser A, Haisch C. Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem. 2015;6553–61.

  102. Temur E, Boyacı İ, Tamer U, Unsal H, Aydogan N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem. 2010;397(4):1595–604.

    Article  CAS  Google Scholar 

  103. Grow AE, Wood LL, Claycomb JL, Thompson PA. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods 2003;53(2):221–33.

  104. Liu TT, Lin YH, Hung CS, Liu TJ, Chen Y, Huang YC, Tsai TH, Wang HH, Wang DW, Wang JK, Wang YL, Lin CH (2009) A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS One. 4(5):e5470.

  105. Krause M, Rosch P, Radt B, Popp J. Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy. Anal Chem. 2008;80(22):8568–75.

    Article  CAS  Google Scholar 

  106. Walter A, Reinicke M, Bocklitz T, et al. Raman spectroscopic detection of physiology changes in plasmid-bearing Escherichia coli with and without antibiotic treatment. Anal Bioanal Chem. 2011;400(9):2763–73.

    Article  CAS  Google Scholar 

  107. Neugebauer U, Schmid U, Baumann K, et al. Towards a detailed understanding of bacterial metabolism - spectroscopic characterization of Staphylococcus epidermidis. Chem Phys Chem. 2007;8(1):124–37.

    CAS  Google Scholar 

  108. Li T, Guo LP, Wang ZX. Microarray based Raman spectroscopic detection with gold nanoparticle probes. Progress on post-genome technologies. 2007;92–95.

  109. Choo J, Chon H, Lim C, et al. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem. 2010;82(12):5290–5.

    Article  CAS  Google Scholar 

  110. Douglas P, Stokes RJ, Graham D, Smith WE. Immunoassay for p38 MAPK using surface enhanced resonance Raman spectroscopy (SERRS). Analyst. 2008;133(6):791–6.

    Article  CAS  Google Scholar 

  111. Birkmeyer RC, Diaco R, Hutson DK, et al. Application of novel chromium dioxide magnetic particles to immunoassay development. Clin Chem. 1987;33(9):1543–7.

    CAS  Google Scholar 

  112. Aldujaili EAS, Forrest GC, Edwards CRW, Landon J. Evaluation and application of magnetizable charcoal for separation in radioimmunoassays. Clin Chem. 1979;25(8):1402–5.

    CAS  Google Scholar 

  113. Gruetzmacher RR, Ebersole RC, Wang LT, et al. Magnetic immunoassay - a heterogeneous immunoassay based on the detection of magnetic particles. Clin Chem. 1983;29(6):1252.

    Google Scholar 

  114. Chon H, Lee S, Son SW, Oh CH, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem. 2009;81(8):3029–34.

    Article  CAS  Google Scholar 

  115. Kim I, Junejo I, Lee M, et al. SERS-based multiple biomarker detection using a gold-patterned microarray chip. J Mol Struct. 2012;1023:197–203.

    Article  CAS  Google Scholar 

  116. Lee M, Lee S, Lee JH, et al. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron. 2011;26(5):2135–41.

    Article  CAS  Google Scholar 

  117. Olson TY, Schwartzberg AM, Orme CA, Talley CE, O'Connell B, Zhang JZ. Hollow gold-silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. J Phys Chem C. 2008;112(16):6319–29.

    Article  CAS  Google Scholar 

  118. Liu GL, Lee LP. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett. 2005;87(7):074101.

    Article  CAS  Google Scholar 

  119. Gu XF, Yan YR, Jiang GQ, et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal Bioanal Chem. 2014;406(7):1885–94.

    Article  CAS  Google Scholar 

  120. Liu Z, Tabakman S, Welsher K, Dai HJ. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85–120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Haisch.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haisch, C. Raman-based microarray readout: a review. Anal Bioanal Chem 408, 4535–4545 (2016). https://doi.org/10.1007/s00216-016-9444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9444-9

Keywords

Navigation