Cyclic volatile methylsiloxanes in human blood as markers for ruptured silicone gel-filled breast implants

Abstract

The replacement of medical-grade silicone with industrial-grade silicone material in some silicone gel-filled breast implants (SBI) manufactured by Poly Implant Prothèse and Rofil Medical Nederland B.V., reported in 2010, which resulted in a higher rupture tendency of these SBI, demonstrates the need for non-invasive, sensitive monitoring and screening methods. Therefore a sensitive method based on large volume injection–gas chromatography coupled to mass spectrometry (LVI-GC/MS) was developed to determine octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclo-hexasiloxane (D6) in blood samples from women with intact (n = 13) and ruptured SBI (n = 11). With dichloromethane extraction, sample cooling during preparation, and analysis extraction efficiencies up to 100 % and limits of detection of 0.03–0.05 ng D4–D6/g blood were achieved. Blood samples from women with SBI were investigated. In contrast to women with intact SBI, in blood from women with ruptured SBI higher D4 and D6 concentrations up to 0.57 ng D4/g blood and 0.16 ng D6/g blood were detected. With concentrations above 0.18 D4 ng/blood and 0.10 ng D6/g blood as significant criteria for ruptured SBI, this developed analytical preoperative diagnostic method shows a significant increase of the recognition rate. Finally a higher precision (error rate 17 %) than the commonly used clinical diagnostic method, mamma sonography (error rate 46 %), was achieved.

Comparison of the recognition rate of silicone breast implant failures via commonly used clinical diagnostic method (mamma sonography) and developed analytical method (determination of cyclic volatile siloxanes concentration in human blood with LVI-GC-MS)

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Varaprath S, Stutts D, Kozerski G. Silicon Chem. 2006;3:79–102.

    CAS  Article  Google Scholar 

  2. 2.

    Hurd CB. J Am Chem Soc. 1946;68:364–70.

    CAS  Article  Google Scholar 

  3. 3.

    Horii Y, Kannan K. Arch Environ Contam Toxicol. 2008;55:701–10.

    CAS  Article  Google Scholar 

  4. 4.

    Dudzina T, Von Goetz N, Bogdal C, Biesterbos JWH, Hungerbühler K. Environ Int. 2014;62:86–94.

    CAS  Article  Google Scholar 

  5. 5.

    Lykissa ED, Kala SV, Hurley JB, Lebovitz RM. Anal Chem. 1997;69:4912–6.

    CAS  Article  Google Scholar 

  6. 6.

    Brook MA. Biomaterials. 2006;27:3274–86.

    CAS  Article  Google Scholar 

  7. 7.

    Puskas JE, Luebbers MT. WIREs Nanomed Nanobiotechnol. 2012;4:153–68.

    Article  Google Scholar 

  8. 8.

    Flassbeck D, Pfleiderer B, Klemens P, Heumann KG, Eltze E, Hirner AV. Anal Bioanal Chem. 2003;375:356–62.

    CAS  Google Scholar 

  9. 9.

    Kala SV, Lykissa ED, Neely MW, Lieberman MW. Am J Pathol. 1998;152:645.

    CAS  Google Scholar 

  10. 10.

    Pfleiderer B, Moore A, Tokareva E, Ackerman JL, Garrido L. Biomaterials. 1999;20:561–71.

    CAS  Article  Google Scholar 

  11. 11.

    Eltze E, Bettendorf O, Rody A, Jackisch C, Herchenröder F, Böcker W, et al. J Biomed Mater Res A. 2003;64:12–9.

    CAS  Article  Google Scholar 

  12. 12.

    Wazir U, Kasem A, Mokbel K. Arch Plast Surg. 2015;42:4–10.

    Article  Google Scholar 

  13. 13.

    Lampert FM, Schwarz M, Grabin S, Stark GB. Geburtshilfe Frauenheilkd. 2012;72:243.

    Article  Google Scholar 

  14. 14.

    Wang DG, Alaee M, Steer H, Tait T, Williams Z, Brimble S, et al. Chemosphere. 2013;93:741–8.

    CAS  Article  Google Scholar 

  15. 15.

    Kierkegaard A, Van Egmond R, McLachlan MS. Environ Sci Technol. 2011;45:5936–42.

    CAS  Article  Google Scholar 

  16. 16.

    Sparham C, van Egmond R, Hastie C, O’Connor S, Gore D, Chowdhury N. J Chromatogr A. 2011;1218:817–23.

    CAS  Article  Google Scholar 

  17. 17.

    Utell MJ, Gelein R, Yu CP, Kenaga C, Geigel E, Torres A, et al. Toxicol Sci. 1998;44:206–13.

    CAS  Article  Google Scholar 

  18. 18.

    Flassbeck D, Pfleiderer B, Grümping R, Hirner AV. Anal Chem. 2001;73:606–11.

    CAS  Article  Google Scholar 

  19. 19.

    Xu L, Shi Y, Wang T, Dong Z, Su W, Cai Y. Environ Sci Technol. 2012;46:11718–26.

    CAS  Article  Google Scholar 

  20. 20.

    Xu L, Shi Y, Liu N, Cai Y. Sci Total Environ. 2015;505:454–63.

    CAS  Article  Google Scholar 

  21. 21.

    Companioni-Damas EY, Santos FJ, Galceran MT. Talanta. 2012;89:63–9.

    CAS  Article  Google Scholar 

  22. 22.

    Khan UD. Aesthet Plast Surg. 2008;32:684–7.

    Article  Google Scholar 

  23. 23.

    DIN Deutsches Institut für Normung EV (2008) DIN 32645 Nachweis-, Chemische Analytik Bestimmungsgrenze, Erfassungs- Begriffe, Wiederholbedingungen. Beuth Verlag, Berlin

  24. 24.

    Hanssen L, Warner NA, Braathen T, Odland J, Lund E, Nieboer E, et al. Environ Int. 2013;51:82–7.

    CAS  Article  Google Scholar 

  25. 25.

    Plotzke KP, Crofoot SD, Ferdinandi ES, Beattie JG, Reitz RH, Mcnett DA, et al. Drug Metab Dispos. 2000;28:192–204.

    CAS  Google Scholar 

  26. 26.

    Scaranelo AM, Marques AF, Smialowski EB, Lederman HM. Sao Paulo Med J. 2004;122:41–7.

    Article  Google Scholar 

  27. 27.

    Hölmich LR, Friis S, Fryzek JP, Vejborg IM, Conrad C, Sletting S, et al. Arch Surg. 2003;138:801–6.

    Article  Google Scholar 

  28. 28.

    Rochira D, Cavalcanti P, Ottaviani A, Tambasco D. Ann Plast Surg. 2016;76:150–4.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the patients who participated in this study and furthermore Macherey-Nagel, Axel Semrau, and Gerstel for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oliver J. Schmitz.

Ethics declarations

Compliance with Ethical Standards

Conflict of interest

None.

Conflict of interest

All research on human subjects presented in this paper was conducted in accordance with the ethical research standards prescribed by the responsible institutional committee on human experimentation and with the WMA Declaration of Helsinki as its 7th revision in 2013. Informed consent was obtained from all human subjects participating in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 166 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosendahl, P., Hippler, J., Schmitz, O.J. et al. Cyclic volatile methylsiloxanes in human blood as markers for ruptured silicone gel-filled breast implants. Anal Bioanal Chem 408, 3309–3317 (2016). https://doi.org/10.1007/s00216-016-9401-7

Download citation

Keywords

  • Siloxanes
  • Human blood
  • Silicone breast implants
  • Large volume injection
  • GC/MS