Analytical and Bioanalytical Chemistry

, Volume 408, Issue 12, pp 3155–3163 | Cite as

Composition of ultrathin binary polymer brushes by thermogravimetry–gas chromatography–mass spectrometry

  • Diego Antonioli
  • Katia Sparnacci
  • Michele Laus
  • Federico Ferrarese Lupi
  • Tommaso Jacopo Giammaria
  • Gabriele Seguini
  • Monica Ceresoli
  • Michele Perego
  • Valentina Gianotti
Research Paper


In the present paper, a reliable and rugged thermogravimetry–gas chromatography–mass spectrometry (TGA–GC–MS) method was developed to determine the composition of ultrathin films consisting of binary blends of functional polystyrene (PS) and polymethylmethacrylate (PMMA) grafted to a silicon wafer. A general methodology will be given to address the composition determination problem for binary or even multicomponent polymer brush systems using the PS/PMMA-based samples as a paradigmatic example. In this respect, several distinct tailor-made materials were developed to ensure reliable calibration and validation stages. The analytical method was tested on unknown samples to follow the composition evolution in PS/PMMA brushes during the grafting reaction. A preferential grafting of the PMMA was revealed in full agreement with its preferential interaction with the SiO2 polar surface.

Graphical abstract

A reliable and rugged thermogravimetry–gas chromatography–mass spectrometry (TGA–GC–MS) method was developed to determine the composition of ultrathin films consisting of binary blends of functional polystyrene (PS) and polymethylmethacrylate (PMMA) grafted to a silicon wafer


Thermogravimetry–gas chromatography–mass spectrometry Composition determination Method validation Ultrathin film analysis Polymer brushes 



Financial support by PRIN 2010–2014 “Materiali Polimerici Nanostrutturati con Strutture Molecolari e Cristalline Mirate” is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2016_9380_MOESM1_ESM.pdf (78 kb)
Fig. S1 (PDF 78.3 kb)


  1. 1.
    Ionov L, Sapra S, Synytska A, Rogach AL, Stamm M, Diez S. Fast and spatially resolved environmental probing using stimuli-responsive polymer layers and fluorescent nanocrystals. Adv Mater. 2006;18:1453–7. doi: 10.1002/adma.200502686.CrossRefGoogle Scholar
  2. 2.
    Tokareva I, Tokarev I, Minko S, Hutter E, Fendler, JH. Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chem Commun (Camb). 2006;3343–3345. doi: 10.1039/b604841b.
  3. 3.
    Westenhofft S, Kotov N. Quantum dot on a rope. J Am Chem Soc. 2002;124:2448–9. doi: 10.1021/ja0173728.CrossRefGoogle Scholar
  4. 4.
    Lin YH, McConney ME, Lemieux MC, Peleshanko S, Jiang C, Singamaneni S, et al. Trilayered ceramic-metal-polymer microcantilevers with dramatically enhanced thermal sensitivity. Adv Mater. 2006;18:1157–61. doi: 10.1002/adma.200502232.CrossRefGoogle Scholar
  5. 5.
    Tokareva I, Minko S, Fendler JH, Hutter E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc. 2004;126:15950–1. doi: 10.1021/ja044575y.CrossRefGoogle Scholar
  6. 6.
    Koberstein JT, Duch DE, Hu W, Lenk TJ, Bhatia R, Brown HR, et al. Creating smart polymer surfaces with selective adhesion properties. J Adhes. 1998;66:229–49.CrossRefGoogle Scholar
  7. 7.
    Uhlmann P, Ionov L, Houbenov N, Nitschke M, Grundke K, Motornov M, et al. Surface functionalization by smart coatings: stimuli-responsive binary polymer brushes. Prog Org Coat. 2006;55:168–74. doi: 10.1016/j.porgcoat.2005.09.014.CrossRefGoogle Scholar
  8. 8.
    Kanazawa H. Temperature-responsive polymers for liquid-phase separations. Anal Bioanal Chem. 2004;378:46–8. doi: 10.1007/s00216-003-2336-9.CrossRefGoogle Scholar
  9. 9.
    Ionov L, Houbenov N, Sidorenko A, Stamm M, Minko S. Smart microfluidic channels. Adv Funct Mater. 2006;16:1153–60. doi: 10.1002/adfm.200500562.CrossRefGoogle Scholar
  10. 10.
    Ichimura K. Light-driven motion of liquids on a photoresponsive surface. Science. 2000;288:1624–6. doi: 10.1126/science.288.5471.1624.CrossRefGoogle Scholar
  11. 11.
    Ionov L, Stamm M, Diez S. Reversible switching of microtubule motility using thermoresponsive polymer surfaces. Nano Lett. 2006;6:1982–7. doi: 10.1021/nl0611539.CrossRefGoogle Scholar
  12. 12.
    Hoffman AS, Stayton PS, Press O, Murthy N, Lackey CA, Cheung C, et al. Design of “smart” polymers that can direct intracellular drug delivery. Polym Adv Technol. 2002;13:992–9.CrossRefGoogle Scholar
  13. 13.
    Lata S, Piehler J. Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush. Anal Chem. 2005;77:1096–105. doi: 10.1021/ac048813j.CrossRefGoogle Scholar
  14. 14.
    Luzinov I, Minko S, Tsukruk VV. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci. 2004;29:635–98. doi: 10.1016/j.progpolymsci.2004.03.001.CrossRefGoogle Scholar
  15. 15.
    Minko S. Responsive polymer brushes. Polym Rev. 2006;46:397–420. doi: 10.1080/15583720600945402.Google Scholar
  16. 16.
    Sidorenko A, Minko S, Schenk-Meuser K, Duschner H, Stamm M. Switching of polymer brushes. Langmuir. 1999;15:8349–55. doi: 10.1021/la990869z.CrossRefGoogle Scholar
  17. 17.
    Minko S, Patil S, Datsyuk V, Simon F, Eichhorn K-J, Motornov M, et al. Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir. 2002;18:289–96. doi: 10.1021/la015637q.CrossRefGoogle Scholar
  18. 18.
    Gensch M, Roodenko K, Hinrichs K, Hunger R, Güell AG, Merson A, et al. Molecule-solid interfaces studied with infrared ellipsometry: ultrathin nitrobenzene films. J Vac Sci Technol B Microelectron Nanometer Struct. 2005;23:1838. doi: 10.1116/1.1947801.CrossRefGoogle Scholar
  19. 19.
    Ionov L, Sidorenko A, Eichhorn KJ, Stamm M, Minko S, Hinrichs K. Stimuli-responsive mixed grafted polymer films with gradually changing properties: direct determination of chemical composition. Langmuir. 2005;21:8711–6. doi: 10.1021/la050620j.CrossRefGoogle Scholar
  20. 20.
    Mikhaylova Y, Ionov L, Rappich J, Gensch M, Esser N, Minko S, et al. In situ infrared ellipsometric study of stimuli-responsive mixed polyelectrolyte brushes. Anal Chem. 2007;79:7676–82. doi: 10.1021/ac070853a.CrossRefGoogle Scholar
  21. 21.
    Shiono A, Hosaka A, Watanabe C, Teramae N, Nemoto N, Ohtani H. Thermoanalytical characterization of polymers: a comparative study between thermogravimetry and evolved gas analysis using a temperature-programmable pyrolyzer. Polym Test. 2015;42:54–61. doi: 10.1016/j.polymertesting.2014.12.011.CrossRefGoogle Scholar
  22. 22.
    Kaal ER, Kurano M, Geißler M, Schoenmakers P, Janssen HG. On-line SEC-Py-GC-MS for the automated comprehensive characterization of copolymers. LC GC Eur. 2007;20:444–52.Google Scholar
  23. 23.
    Raemaekers KGH, Bart JCJ. Applications of simultaneous thermogravimetry-mass spectrometry in polymer analysis. Thermochim Acta. 1997;295:1–58.CrossRefGoogle Scholar
  24. 24.
    Chojnacka A, Ghaffar A, Feilden A, Treacher K, Janssen H-G, Schoenmakers P. Pyrolysis-gas chromatography-mass spectrometry for studying N-vinyl-2-pyrrolidone-co-vinyl acetate copolymers and their dissolution behaviour. Anal Chim Acta. 2011;706:305–11. doi: 10.1016/j.aca.2011.05.052.CrossRefGoogle Scholar
  25. 25.
    McNeill IC. Thermal degradation mechanisms of some addition polymers and copolymers. J Anal Appl Pyrolysis. 1997;40–41:21–41. doi: 10.1016/S0165-2370(97)00006-5.CrossRefGoogle Scholar
  26. 26.
    Yang M, Tsukame T, Saitoh H, Shibasaki Y. Investigation of the thermal degradation mechanisms of poly(styrene-co-methacrylonitrile)s by flash pyrolysis and TG–FTIR measurements. Polym Degrad Stab. 2000;67:479–89. doi: 10.1016/S0141-3910(99)00148-2.CrossRefGoogle Scholar
  27. 27.
    Roland AI, Schmidt-Naake G. Thermal degradation of polystyrene produced by nitroxide-controlled radical polymerization. J Anal Appl Pyrolysis. 2001;58–59:143–54. doi: 10.1016/S0165-2370(00)00158-3.CrossRefGoogle Scholar
  28. 28.
    Zhang B, Blum FD. Thermogravimetric study of ultrathin PMMA films on silica: effect of tacticity. Thermochim Acta. 2003;396:211–7. doi: 10.1016/S0040-6031(02)00518-X.CrossRefGoogle Scholar
  29. 29.
    Chuai C, Almdal K, Lyngaae-Jorgensen J. Thermal behavior and properties of polystyrene/poly(methyl methacrylate) blends. J Appl Polym Sci. 2004;91:609–20. doi: 10.1002/app.13294.CrossRefGoogle Scholar
  30. 30.
    Bate DM, Lehrle RS. Thermal degradation of polymer blends: polystyrene/PMMA blend behaviour related to the copolymerization Φ-factor for this system. Polym Degrad Stab. 1997;55:295–9. doi: 10.1016/S0141-3910(96)00155-3.CrossRefGoogle Scholar
  31. 31.
    Gianotti V, Antonioli D, Sparnacci K, Laus M, Giammaria TJ, Ceresoli M, et al. Characterization of ultra-thin polymeric films by gas chromatography-mass spectrometry hyphenated to thermogravimetry. J Chromatogr A. 2014;1368:204–10. doi: 10.1016/j.chroma.2014.09.073.CrossRefGoogle Scholar
  32. 32.
    Conterosito E, Palin L, Antonioli D, Viterbo D, Mugnaioli E, Kolb U, et al. Structural characterisation of complex layered double hydroxides and TGA-GC-MS study on thermal response and carbonate contamination in nitrate- and organic-exchanged hydrotalcites. Chemistry. 2015;21:14975–86. doi: 10.1002/chem.201500450.CrossRefGoogle Scholar
  33. 33.
    Gianotti V, Antonioli D, Sparnacci K, Laus M, Giammaria TJ, Ferrarese Lupi F, et al. On the thermal stability of PS-b-PMMA block and P(S- r -MMA) random copolymers for nanopatterning applications. Macromolecules. 2013;46:8224–34. doi: 10.1021/ma401023y.CrossRefGoogle Scholar
  34. 34.
    Ferrarese Lupi F, Giammaria TJ, Seguini G, Ceresoli M, Perego M, Antonioli D, et al. Flash grafting of functional random copolymers for surface neutralization. J Mater Chem C. 2014;2:4909–17. doi: 10.1039/c4tc00328d.CrossRefGoogle Scholar
  35. 35.
    Lee H, Jakubowski W, Matyjaszewski K, Yu S, Sheiko SS. Cylindrical core–shell brushes prepared by a combination of ROP and ATRP. Macromolecules. 2006;39:4983–9. doi: 10.1021/ma0604688.CrossRefGoogle Scholar
  36. 36.
    Manring LE. Thermal degradation of poly(methyl methacrylate). 2. Vinyl-terminated polymer. Macromolecules. 1989;22:2673–7.CrossRefGoogle Scholar
  37. 37.
    Lavagnini I, Magno F. A statistical overview on univariate calibration, inverse regression, and detection limits: application to gas chromatography/mass spectrometry technique. Mass Spectrom Rev. 2007;26:1–18. doi: 10.1002/mas.20100.CrossRefGoogle Scholar
  38. 38.
    Asuero AG, Bueno JM. Fitting straight lines with replicated observations by linear regression. IV. Transforming data. Crit Rev Anal Chem. 2011;41:36–69. doi: 10.1080/10408347.2010.523589.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Diego Antonioli
    • 1
  • Katia Sparnacci
    • 1
  • Michele Laus
    • 1
  • Federico Ferrarese Lupi
    • 2
  • Tommaso Jacopo Giammaria
    • 1
    • 2
  • Gabriele Seguini
    • 2
  • Monica Ceresoli
    • 2
    • 3
  • Michele Perego
    • 2
  • Valentina Gianotti
    • 1
  1. 1.Dipartimento di Scienze e Innovazione Tecnologica (DISIT)Università del Piemonte Orientale “A. Avogadro”, INSTMAlessandriaItaly
  2. 2.Laboratorio MDMIMM-CNRAgrate BrianzaItaly
  3. 3.Dipartimento di FisicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations