Skip to main content

Advertisement

Log in

Simple and sensitive electrogenerated chemiluminescence peptide-based biosensor for detection of matrix metalloproteinase 2 released from living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive electrogenerated chemiluminescence biosensor was developed to monitor matrix metalloproteinase 2 (MMP-2) by employing a specific peptide (CGPLGVRGK) as a molecular recognition substrate. Bis(2,2′-bipyridine)-4′-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-bis(hexafluorophosphate) (Ru(bpy)2(mcbpy-O-Su-ester)(PF6)2 (Ru1) was used as ECL-emitting species and covalently labeled onto the peptide through NH2-containing lysine on the peptide via acylation reaction to form Ru1-peptide as an ECL probe. An ECL peptide-based biosensor was fabricated by self-assembling the ECL probe onto the surface of gold electrode. MMP-2 can specifically cleave the Ru1-peptide on the electrode surface, which led the partly Ru1-peptide to leave the electrode surface and resulted in the decrease of the ECL intensity obtained from the resulted electrode in 0.1 M phosphate-buffered saline (pH 7.4) containing tri-n-propylamine. The decreased ECL intensity was piecewise linear to the concentration of MMP-2 in the range from 1 to 500 ng/mL. Moreover, the ECL biosensor is successfully applied to detection of MMP-2 secreted by living cell, such as HeLa cells. Additionally, the biosensor was also applied to the evaluation of matrix metalloproteinase inhibitors. The strategy presented here is promising for other disease-related matrix metalloproteinase assay and matrix metalloproteinase inhibitor profiling with sensitivity and simplicity.

Detection of MMP-2 released from living cells by ECL peptide-based biosensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alouini MA, Moustoifa EF, Rubio SA, Bartegi A, Berthelot T, Déléris G. Design, characterization, and evaluation of peptide arrays allowing the direct monitoring of MMP activities. Anal Bioanal Chem. 2012;403:185–94.

    Article  CAS  Google Scholar 

  2. Yang J, Zhang Z, Lin J, Lu J, Liu B, Zeng S, et al. Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor. Biochim Biophys Acta. 2007;1773:400–7.

  3. Funovic M, Weissleder R, Tung C-H. Protease sensors for bioimaging. Anal Bioanal Chem. 2003;377:956–63.

    Article  Google Scholar 

  4. Sheen-Chen SM, Chen HS, Eng HL, Sheen CC, Chen WJ. Serum levels of matrix metalloproteinase 2 in patients with breast cancer. Cancer Lett. 2001;173:79–82.

    Article  CAS  Google Scholar 

  5. Vasala K, Paakko P, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 immunoreactive protein as a prognostic marker in bladder cancer. Urology. 2003;62:952–7.

    Article  Google Scholar 

  6. Shi MM, Yu B, Gao HG, Mu JW, Ji CW. Matrix metalloproteinase 2 overexpression and prognosis in colorectal cancer: a meta-analysis. Mol Biol Rep. 2013;40:617–23.

    Article  CAS  Google Scholar 

  7. Gupta B, Mai K, Lowe SB, Wakefield D, Nick Girolamo D, Gaus K, et al. Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals. Anal Chem. 2015;87:9946–53.

  8. Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJC. Matrix metalloproteinases. Br J Surg. 1997;84:160–6.

    Article  CAS  Google Scholar 

  9. Parsons SL, Watson SA, Collins HM, Griffin NR, Clarke PA, Steele RJC. Gelatinase (MMP-2 and -9) expression in gastrointestinal malignancy. Br J Cancer. 1998;78:1495–502.

    Article  CAS  Google Scholar 

  10. Philip S, Bulbule A, Kundu GC. Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-b-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem. 2001;276:44926–35.

    Article  CAS  Google Scholar 

  11. Patel S, Sumitra G, Koner BC, Saxena A. Role of serum matrix metalloproteinase-2 and -9 to predict breast cancer progression. Clin Biochem. 2011;44:869–72.

    Article  CAS  Google Scholar 

  12. Qi H, Li M, Dong M, Ruan SP, Gao Q, Zhang C. Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide. Anal Chem. 2014;86:1372–9.

    Article  CAS  Google Scholar 

  13. Gao L, Mbonu N, Cao L, Gao D. Label-free colorimetric detection of gelatinases on nanoporous silicon photonic films. Anal Chem. 2008;80:1468–73.

    Article  CAS  Google Scholar 

  14. Moss ML, Koller G, Bartsch JW, Rakow S, Schlomann U, Rasmussen FH. A colorimetric-based amplification system for proteinases including MMP2 and ADAM8. Anal Biochem. 2015;484:75–81.

    Article  CAS  Google Scholar 

  15. Wang Z, Li X, Feng D, Li L, Shi W, Ma H. Poly(m-phenylenediamine)-based fluorescent nanoprobe for ultrasensitive detection of matrix metalloproteinase 2. Anal Chem. 2014;86:7719–25.

    Article  CAS  Google Scholar 

  16. Wang Y, Shen P, Li C, Wang Y, Liu Z. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal Chem. 2012;84:1466–73.

    Article  CAS  Google Scholar 

  17. Mok H, Bae KH, Ahn CH, Park TG. PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir. 2009;25:1645–50.

    Article  CAS  Google Scholar 

  18. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem. 2008;120:2846–9.

  19. Yang G, Li L, Rana RK, Zhu J. Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase 2. Carbon. 2013;61:357–66.

    Article  CAS  Google Scholar 

  20. Zheng T, Zhang R, Zhang QF, Tan T, Zhang K, Zhu J, et al. Ultrasensitive dual-channel detection of matrix metalloproteinase-2 in human serum using gold-quantum dot core–satellite nanoprobes. Chem Commun. 2013;49:7881–3.

  21. Jing P, Yi H, Xue S, Yuan R, Xu W. A ‘signal on-off’ electrochemical peptide biosensor for matrix metalloproteinase 2 based on target induced cleavage of a peptide. RSC Adv. 2015;5:65725–30.

    Article  CAS  Google Scholar 

  22. Bard AJ. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004.

    Book  Google Scholar 

  23. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–36.

    Article  CAS  Google Scholar 

  24. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    Article  CAS  Google Scholar 

  25. Marquette CA, Blum LJ. Electro-chemiluminescent biosensing. Anal Bioanal Chem. 2008;390:155–68.

    Article  CAS  Google Scholar 

  26. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem. 2009;2:359–85.

    Article  CAS  Google Scholar 

  27. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39:3275–304.

    Article  CAS  Google Scholar 

  28. Rampazzo E, Bonacchi S, Genovese D, Juris R, Marcaccio M, Montalti M, et al. Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coord Chem Rev. 2012;256:1664–81.

  29. Bertoncello P, Stewart AJ, Dennany L. Analytical applications of nanomaterials in electrogenerated chemiluminescence. Anal Bioanal Chem. 2014;406:5573–87.

    Article  CAS  Google Scholar 

  30. Deng S, Lei J, Huang Y, Cheng Y, Ju H. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin. Anal Chem. 2013;85:5390–6.

    Article  CAS  Google Scholar 

  31. Wang H, Yuan Y, Chai Y, Yuan R. Sandwiched electrochemiluminescent peptide biosensor for the detection of prognostic indicator in early-stage cancer based on hollow, magnetic, and self-enhanced nanosheets. Small. 2015;11:3703–9.

    Article  CAS  Google Scholar 

  32. Castor KJ, Metera KL, Tefashe UM, Serpell CJ, Mauzeroll J, Sleiman HF. Cyclometalated iridium(III) imidazole phenanthroline complexes as luminescent and electrochemiluminescent G-quadruplex DNA binders. Inorg Chem. 2015;54:6958–67.

    Article  CAS  Google Scholar 

  33. Liang W, Zhuo Y, Xiong C, Zheng Y, Chai Y, Yuan R. Ultrasensitive cytosensor based on self-enhanced electrochemiluminescent ruthenium-silica composite nanoparticles for efficient drug screening with cell apoptosis monitoring. Anal Chem. 2015;87:12363–71.

    Article  CAS  Google Scholar 

  34. Kadimisetty K, Malla S, Sardesai N P, Joshi AA, Faria RC, Lee NH, et al. Automated multiplexed ECL immunoarrays for cancer biomarker proteins. Anal Chem. 2015;87:4472–8.

  35. Valenti G, Zangheri M, Sansaloni SE, Mirasoli M, Penicaud A, Roda A, et al. Transparent carbon nanotube network for efficient electrochemiluminescence devices. Chem Eur J. 2015;21:12640–5.

  36. Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Quantum dot/bioluminescence resonance energy transfer base highly sensitive detection of proteases. Angew Chem Int Ed. 2007;46:4346–9.

    Article  CAS  Google Scholar 

  37. Shimidzu T, Iyoda T, Izaki K. Photoelectrochemical properties of bis(2,2′-bipyridlne) (4,4′-dlcarboxy-2,2′-bipyrldlne)ruthenlum(II) chloride. J Phys Chem. 1985;89:642–5.

    Article  CAS  Google Scholar 

  38. Miao W, Choi JP, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2‘-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) system revisited-a new route involving TPrA·+cation radicals. J Am Chem Soc. 2002;124:14478–85.

    Article  CAS  Google Scholar 

  39. Cho TJ, Zangmeister RA, Maccuspie RI, Patri AK, Hackley V. Newkome-type dendron-stabilized gold nanoparticles: synthesis, reactivity, and stability. Chem Mater. 2011;23:2665–76.

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications. 2nd ed. INC.: John Wiley & Sons; 2000.

    Google Scholar 

  41. Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc. 1997;119:8916–20.

    Article  CAS  Google Scholar 

  42. Adjémian J, Anne A, Cauet G, Demaille C. Cleavage-sensing redox peptide monolayers for the rapid measurement of the proteolytic activity of trypsin and α-thrombin enzymes. Langmuir. 2010;26:10347–56.

    Article  Google Scholar 

  43. Wong T-S, Kwong DL-W, Sham JS-T, Wei WI, Kwong Y-L, Yuen AP-W. Clinicopathologic significance of plasma matrix metalloproteinase-2 and -9 levels in patients with undifferentiated nasopharyngeal carcinoma. Eur J Surg Oncol. 2004;30:560–4.

    Article  Google Scholar 

  44. Miller C, Cuendet P, Graetzel M. Adsorbed ω-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution. J Phys Chem. 1991;95:877–86.

    Article  CAS  Google Scholar 

  45. Sun B, Qi H, Ma F, Gao Q, Zhang C, Miao W. Double covalent coupling method for the fabrication of highly sensitive and reusable electrogenerated chemiluminescence sensors. Anal Chem. 2010;82:5046–52.

    Article  CAS  Google Scholar 

  46. Li Y, Qi H, Fang F, Zhang C. Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2’-bipyridyl) ruthenium derivative tags. Talanta. 2007;72:1704–9.

    Article  CAS  Google Scholar 

  47. Chau Y, Pader RF, Dang NM, Langer R. Antitumor efficacy of a novel polymer–peptide–drug conjugate in human tumor xenograft models. Int J Cancer. 2006;118:1519–26.

    Article  CAS  Google Scholar 

  48. Feng D, Zhang Y, Feng T, Shi W, Li X, Ma H. A graphene oxide–peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2. Chem Commun. 2011;47:10680–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank The National Science Foundation of China (Nos. 21522504, 21375084, 21275095, 21475082), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ2065, 2013SZS08-Z01, and 2013SZS08-P01), and the Fundamental Research Funds for the Central Universities (No. GK201505008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglan Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Q., Gao, H., Li, Z. et al. Simple and sensitive electrogenerated chemiluminescence peptide-based biosensor for detection of matrix metalloproteinase 2 released from living cells. Anal Bioanal Chem 408, 7067–7075 (2016). https://doi.org/10.1007/s00216-016-9360-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9360-z

Keywords

Navigation