Skip to main content

Advertisement

Log in

Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We recently established and optimized an immortalized human in vitro blood-brain barrier (BBB) model based on the hBMEC cell line. In the present work, we validated this mono-culture 24-well model with a representative series of drug substances which are known to cross or not to cross the BBB. For each individual compound, a quantitative UHPLC-MS/MS method in Ringer HEPES buffer was developed and validated according to current regulatory guidelines, with respect to selectivity, precision, and reliability. Various biological and analytical challenges were met during method validation, highlighting the importance of careful method development. The positive controls antipyrine, caffeine, diazepam, and propranolol showed mean endothelial permeability coefficients (P e) in the range of 17–70 × 10−6 cm/s, indicating moderate to high BBB permeability when compared to the barrier integrity marker sodium fluorescein (mean P e 3–5 × 10−6 cm/s). The negative controls atenolol, cimetidine, and vinblastine showed mean P e values < 10 × 10−6 cm/s, suggesting low permeability. In silico calculations were in agreement with in vitro data. With the exception of quinidine (P-glycoprotein inhibitor and substrate), BBB permeability of all control compounds was correctly predicted by this new, easy, and fast to set up human in vitro BBB model. Addition of retinoic acid and puromycin did not increase transendothelial electrical resistance (TEER) values of the BBB model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article  CAS  Google Scholar 

  2. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.

    Article  Google Scholar 

  3. Di L, Rong H, Feng B. Demystifying brain penetration in central nervous system drug discovery. J Med Chem. 2013;56:2–12.

    Article  CAS  Google Scholar 

  4. Deli MA. In: Lajtha A, Reith MEA, editors. Handb. Neurochem. Mol. Neurobiol. 3rd ed. Berlin Heidelberg: Springer Verlag; 2007. p. 29–55.

    Chapter  Google Scholar 

  5. Tóth A, Veszelka S, Nakagawa S, Niwa M, Deli MA. Patented in vitro blood-brain barrier models in CNS drug discovery. Recent Pat CNS Drug Discov. 2011;6:107–18.

    Article  Google Scholar 

  6. Reichel A. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers. 2009;6:2030–49.

    Article  CAS  Google Scholar 

  7. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253–63.

    Article  CAS  Google Scholar 

  8. Helms HC, Waagepetersen HS, Nielsen CU, Brodin B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010;12:759–70.

    Article  CAS  Google Scholar 

  9. Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res. 2012;1521:1–15.

    Article  Google Scholar 

  10. Dehouck M-P, Meresse S, Delorme P, Fruchart J-C, Cecchelli R. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem. 1990;54:1798–801.

    Article  CAS  Google Scholar 

  11. Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37:635–43.

    Article  Google Scholar 

  12. Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res. 2009;59:404–13.

    Article  CAS  Google Scholar 

  13. Stins MF, Badger J, Kim KS. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog. 2001;30:19–28.

    Article  CAS  Google Scholar 

  14. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.

    CAS  Google Scholar 

  15. Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, Ohtsuki S, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol. 2010;225:519–28.

    Article  CAS  Google Scholar 

  16. Maeda T, Sano Y, Abe M, Shimizu F, Kashiwamura Y, Ohtsuki S, et al. Establishment and characterization of spinal cord microvascular endothelial cell lines. Clin Exp Neurol. 2013;4:326–38.

    Article  CAS  Google Scholar 

  17. Prudhomme JG, Sherman IW, Land KM, Moses AV, Stenglein S, Nelson JA. Studies of Plasmodium falciparum cytoadherence using immortalized human brain capillary endothelial cells. Int J Parasitol. 1996;26:647–55.

    Article  CAS  Google Scholar 

  18. Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25:59–127.

    Article  Google Scholar 

  19. Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33–50.

    Article  Google Scholar 

  20. Guidance for Industry: Bioanalytical Method Validation, US Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), May 2001.

  21. Guideline on bioanalytical method validation, European Medicines Agency (EMEA/CHMP/EWP/192217/2009), London, 21 July 2011.

  22. Wegener J, Abrams D, Willenbrink W, Galla H-J, Janshoff A. Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. BioTechniques. 2004;37:590–7.

    CAS  Google Scholar 

  23. Siflinger-Birnboim A, del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB. Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol. 1987;132:111–7.

    Article  CAS  Google Scholar 

  24. Dehouck M-P, Jolliet-Riant P, Brée F, Fruchart J-C, Cecchelli R, Tillement J-P. Drug transfer across the blood-brain barrier: correlation between in vitro and in vivo models. J Neurochem. 1992;58:1790–7.

    Article  CAS  Google Scholar 

  25. Maestro, version 9.9, Schrödinger, LLC, New York, NY, 2014.

  26. QikProp, version 4.1, Schrödinger, LLC, New York, NY, 2014.

  27. Marvin 15.4.13.0, 2015, ChemAxon (http://www.chemaxon.com).

  28. Bertrand CA, Durand DM, Saidel GM, Laboisse C, Hopfer U. System for dynamic measurements of membrane capacitance in intact epithelial monolayers. Biophys J. 1998;75:2743–56.

    Article  CAS  Google Scholar 

  29. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16:1514–9.

    Article  CAS  Google Scholar 

  30. van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target. 1998;6:151–65.

    Article  Google Scholar 

  31. Ji AJ, Jiang Z, Livson Y, Davis JA, Chu JX, Weng N. Challenges in urine bioanalytical assays: overcoming nonspecific binding. Bioanalysis. 2010;2:1573–86.

    Article  CAS  Google Scholar 

  32. Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep. 2014;4:1–10.

    Article  Google Scholar 

  33. Sevin E, Dehouck L, Fabulas-da Costa A, Cecchelli R, Dehouck MP, Lundquist S, et al. Accelerated Caco-2 cell permeability model for drug discovery. J Pharmacol Toxicol Methods. 2013;68:334–9.

    Article  CAS  Google Scholar 

  34. Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2:2111–9.

    Article  CAS  Google Scholar 

  35. Kusuhara H, Suzuki H, Terasaki T, Kakee A, Lemaire M, Sugiyama Y. P-Glycoprotein mediates the efflux of quinidine across the blood-brain barrier. J Pharmacol Exp Ther. 1997;283:574–80.

    CAS  Google Scholar 

  36. Salminen T, Pulli A, Taskinen J. Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. J Pharm Biomed Anal. 1997;15:469–77.

    Article  CAS  Google Scholar 

  37. Platts JA, Abraham MH, Zhao YH, Hersey A, Ijaz L, Butina D. Correlation and prediction of a large blood-brain distribution data set—an LFER study. Eur J Med Chem. 2001;36:719–30.

    Article  CAS  Google Scholar 

  38. Usansky HH, Sinko PJ. Computation of LogBB values for compounds transported through carrier-mediated mechanisms using in vitro permeability data from brain microvessel endothelial cell (BMEC) monolayers. Pharm Res. 2003;20:390–6.

    Article  CAS  Google Scholar 

  39. Rankovic Z. CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem. 2015;58:2584–608.

    Article  CAS  Google Scholar 

  40. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–50.

    Article  CAS  Google Scholar 

  41. Hammarlund-Udenaes M. The use of microdialysis in CNS drug delivery studies: pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev. 2000;45:283–94.

    Article  CAS  Google Scholar 

  42. Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck M-P. Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res. 2002;19:976–81.

    Article  CAS  Google Scholar 

  43. Jähne EA, Eigenmann DE, Culot M, Cecchelli R, Walter FR, Deli MA, et al. Development and validation of a LC-MS/MS method for assessment of an anti-inflammatory indolinone derivative by in vitro blood-brain barrier models. J Pharm Biomed Anal. 2014;98:235–46.

    Article  Google Scholar 

  44. Zaugg J, Baburin I, Strommer B, Kim H-J, Hering S, Hamburger M. HPLC-based activity profiling: discovery of piperine as a positive GABAA receptor modulator targeting a benzodiazepine-independent binding site. J Nat Prod. 2010;73:185–91.

    Article  CAS  Google Scholar 

  45. Khom S, Strommer B, Schöffmann A, Hintersteiner J, Baburin I, Erker T, et al. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochem Pharmacol. 2013;85:1827–36.

    Article  CAS  Google Scholar 

  46. Schöffmann A, Wimmer L, Goldmann D, Khom S, Hintersteiner J, Baburin I, et al. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives. J Med Chem. 2014;57:5602–19.

    Article  Google Scholar 

  47. Wimmer L, Schönbauer D, Pakfeifer P, Schöffmann A, Khom S, Hering S, et al. Developing piperine towards TRPV1 and GABAA receptor ligands—synthesis of piperine analogs via Heck-coupling of conjugated dienes. Org Biomol Chem. 2015;13:990–4.

    Article  CAS  Google Scholar 

  48. McCall AL, Millington WR, Wurtman RJ. Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci. 1982;31:2709–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Profs. Kwang Sik Kim, Dennis Grab, Reto Brun, and Tanja Wenzler for provision of the hBMEC cell line. Thanks go to Orlando Fertig for technical assistance and to the Swiss National Science Foundation (SNSF) for financial support (grant 05320_126888/1 to MH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhssin Oufir.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Fig. S1. TEER values recorded real time by the CellZscope system for hBMEC monolayers cultured with media containing different concentrations of (a) retinoic acid (RA) and (b) puromycin (n = 1). Table S1. Optimized UHPLC parameters for compounds. Table S2. Calibrators and calibration curve parameters for analytes. Response: A x Conc.2 + B x Conc. + C, quadratic regression, weighting factor 1/X (exception caffeine and cimetidine: 1/X 2), origins: included. Table S3. Carryover assessment for both analytes and IS (n = 7–10). Table S4. Selectivity test at the LLOQ, based on 3 different RHB batches (n = 6). Table S5. Within-run imprecision (CV %) and inaccuracy (RE %) of QCs (n = 6). Table S6. Dilution test (n = 6). Table S7. Absolute extraction yield of analytes and IS (n = 6). Table S8. Short-term stabilities during storage at various conditions expressed as CV % and RE % (n = 6). Table S9. Long-term stabilities expressed as difference (%) between t = 0 and t = last and slopes (n = 3). Table S10. Stock solution stability of compounds. (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eigenmann, D.E., Jähne, E.A., Smieško, M. et al. Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model. Anal Bioanal Chem 408, 2095–2107 (2016). https://doi.org/10.1007/s00216-016-9313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9313-6

Keywords