Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 9, pp 2341–2351 | Cite as

Comparison of potential higher order reference methods for total haemoglobin quantification—an interlaboratory study

  • Claudia FrankEmail author
  • Christine Brauckmann
  • Marie Palos
  • Cristian G. Arsene
  • Joerg Neukammer
  • Maria Estela del Castillo Busto
  • Sabine Zakel
  • Claudia Swart
  • Bernd Güttler
  • Rainer Stosch
Research Paper

Abstract

The total haemoglobin (Hb) concentration in blood is one of the most frequently measured analytes in clinical medicine because of its significance for evaluating the health state of a human. The spectrophotometric cyanmethaemoglobin (HiCN) method is the internationally accepted conventional reference method to determine this biomarker. It is frequently used in clinical routine diagnostics but is not traceable to the International System of Units and thus does not meet highest metrological demands. A further critical issue is the toxicity of the necessary potassium cyanide. Different methods to solve these problems are reported here. They all were validated against the HiCN method in an interlaboratory comparison by measuring the total Hb concentration present in the certified reference material JCCRM 912-2M. Methods considered were the spectrophotometric alkaline haematin detergent (AHD) method as well as several isotope dilution (ID)-based approaches. The latter include inductively coupled plasma mass spectrometry (ICP-MS), species-specific (SS) ICP-MS, organic MS and Raman spectrometry.

Graphical abstract

Keywords

Haemoglobin Reference method HiCN Isotope dilution Raman spectroscopy Mass spectrometry 

Notes

Acknowledgements

We thank the Stabinger GmbH for developing and providing a prototype of a high accuracy density measurement device, applicable to small sample volumes.

The research leading to these results has received funding from the European Union on the basis of Decision No. 912/2009/EC within the European Metrology Research Programme (EMRP) HLT-05 2012. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_176_MOESM1_ESM.pdf (54 kb)
ESM 1 (PDF 54 kb)

References

  1. 1.
    World Health Organisation. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. VMNIS. 2011:1–6.Google Scholar
  2. 2.
    Karima Z, Lyoumia S, Nicolasa G, Deybacha J-C, Gouyaa L, Puy H. Porphyrias: a 2015 update. Clin Res Hepatol Gastroenterol. 2015;39(4):412–35.CrossRefGoogle Scholar
  3. 3.
    Bach M, et al. Pschryembel - Klinisches Wörterbuch (clinical glossary). 261 ed. Walter de Gruyter; 2007.Google Scholar
  4. 4.
    Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159(4):303–12.CrossRefGoogle Scholar
  5. 5.
    Mishra JP, Mishra J, Padhi RK, Mishra S, Manjareeka M. Hematological profile in neonatal jaundice. J Basic Clin Physiol Pharmacol. 2014;25(2):225–8.CrossRefGoogle Scholar
  6. 6.
    Kiefel V. Transfusionsmedizin und Immunhämatologie. 4th ed. Berlin: Springer; 2011.CrossRefGoogle Scholar
  7. 7.
    St.Pierre M, Hofinger G. Human factors und Patientensicherheit in der Akutmedizin. 3rd ed. Berlin: Springer; 2014.Google Scholar
  8. 8.
    Müller M, Geisen C, Zacharowski K, Tonn T, Seifried E. Transfusion of packed red cells—indications, triggers and adverse events. Dtsch Arztebl Int. 2015;112:507–18.Google Scholar
  9. 9.
    Magnan MA, Mood DW. The effects of health state, hemoglobin, global symptom distress, mood disturbance, and treatment site on fatigue onset, duration, and distress in patients receiving radiation therapy. Oncol Nurs Forum. 2003;30(2):E33–9.CrossRefGoogle Scholar
  10. 10.
    Bundesärztekammer. Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen (RiLiBÄK). Dtsch Arztebl. 2014;111(38):1583–618.Google Scholar
  11. 11.
    Zwart A, van Assendelft OW, Bull BS, England JM, Lewis SM, Zijlstra WG. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard (4th edition). J Clin Pathol. 1996;49(4):271–4.CrossRefGoogle Scholar
  12. 12.
    Drapkin DL, Austin JH. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivates in human, dog, and rabbit blood. J Biol Chem. 1932;98(2):719–33.Google Scholar
  13. 13.
    Lewis SM, Kumari S. Guidelines on standard operating procedures for haematology, Chapter 7: Haemoglobinometry. WHO; 1999.Google Scholar
  14. 14.
    British Standard Institution. Haemiglobincyanide (cyanmethaemoglobin) preparation as a standard for spectrometric haemoglobinometry. BS 3985:2003 Haemoglobincyanide (cyanmethhaemoglobin) preparation as a standard for spectrometric haemoglobin. 2003.Google Scholar
  15. 15.
    German Standards Institution. Haematology—determination of haemoglobin concentration in blood—reference method. DIN 58931:2010 Haematology—determination of haemoglobin concentration in blood—reference method. 2010.Google Scholar
  16. 16.
    Bull BS, Houwen B, Koepke JA, Simson E, van Assendelft OW. Reference and selected procedures for the quantitative determination of hemoglobin in blood; Approved standard—third edition CLSI standard H15-A3: reference and selected procedures for the quantitative determination of hemoglobin in blood (Wayne, PA: Clinical Laboratory Standards Institute). 2000.Google Scholar
  17. 17.
    Lewis SM, Garvey B, Manning R, Sharp SA, Wardle J. Lauryl sulphate haemoglobin: a non-hazardous substitute for HiCN in haemoglobinometry. Clin Lab Haematol. 1991;13:279.CrossRefGoogle Scholar
  18. 18.
    Lema OE, Carter JY, Arube PA, Munafu CG, Wangai MW, Rees PH. Evaluation of the alkaline haematin D-575 method for haemoglobin estimation in east Africa. Bull WHO. 1994;72:937.Google Scholar
  19. 19.
    Shah VB, Shah BS, Puranik GV. Evaluation of non-cyanide methods for hemoglobin estimation Indian. Indian J Pathol Microbiol. 2011;54(4):764.Google Scholar
  20. 20.
    Zander R, Lang W, Wolf HU. Alkaline haematin D-575, a new tool for the determination of haemoglobin as an alternative to the cyanhaemiglobin method: I. Description of the method. Clin Chim Acta. 1984;136:83.CrossRefGoogle Scholar
  21. 21.
    Wolf HU, Lang W, Zander R. Alkaline haematin D-575, a new tool for the determination of haemoglobin as an alternative to the cyanhaemiglobin method: II. Standardisation of the method using pure chlorohaemin. Clin Chim Acta. 1984;136:95.CrossRefGoogle Scholar
  22. 22.
    Moharram NMM, El Aouad R, Al Busaidy S, Fabricius A, Heller S, Wood WG, et al. International collaborative assessment study of the AHD 575 method for the measurement of blood haemoglobin. East Mediterr Health J. 2006;12:722.Google Scholar
  23. 23.
    International Organization for Standardization. 2003 In vitro diagnostic medical devices—measurement of quantities in biological samples—metrological traceability of values assigned to calibrators and control materials. ISO 17511:2003 In vitro diagnostic medical devices Measurement of quantities in biological samples Metrological traceability of values assigned to calibrators and control materials. 2003.Google Scholar
  24. 24.
    BIPM. Consultative Committee for Amount of Substances (CCQM), report of the 4th meeting. 1998.Google Scholar
  25. 25.
    Rienitz O. Entwicklung chemisch analytischer Primärmethoden zur Bestimmung physiologisch relevanter Bestandteile in Humanserum: Dissertation, TU Berlin; 2001.Google Scholar
  26. 26.
    Rodrígez-Gomzáles P, Marchante-Gayón JM, García-Alsonso JI, Sanz-Medel A. Isotope pattern deconvolution for internal mass bias correction in the characterisation of isotopically enriched spikes. J Anal Atom Spectrom. 2005;60(2):151–207.CrossRefGoogle Scholar
  27. 27.
    Bedson P. Guidelines for achieving high accuracy in isotope dilution mass spectrometry (IDMS). Cambridge: Royal Society of Chemistry; 2002.Google Scholar
  28. 28.
    Frank C, Rienitz O, Swart C, Schiel D. Improving species-specific IDMS: the advantages of triple IDMS. Anal Bioanal Chem. 2013;405(6):1913–9.CrossRefGoogle Scholar
  29. 29.
    Roux-Dalvai F, de Peredo AG, Simó C, Guerrier L, Bouyssié D, Zanella A, et al. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol Cell Proteomics. 2008;7:2254–69.CrossRefGoogle Scholar
  30. 30.
    Brauckmann C, Frank C, Schulze D, Kaiser P, Swart C. Preparation and characterisation of 57Fe enriched heamoglobin spike material for species-specific isotope dilution mass spectrometry. J Anal Atom Spectrom. 2016;31:1846–57.CrossRefGoogle Scholar
  31. 31.
    Swart C. Metrology for metalloproteins— where are we now, where are we heading? Anal Bioanal Chem. 2013;405:5698–723.CrossRefGoogle Scholar
  32. 32.
    Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics. 2009;72(5):740–9.CrossRefGoogle Scholar
  33. 33.
    del Castillo Busto ME, Montes-Bayón M, Sanz-Medel A. Accurate determination of human serum transferrin isoforms: exploring metal-specific isotope dilution analysis as a quantitative proteomic tool. Anal Chem. 2006;78:8218–26.CrossRefGoogle Scholar
  34. 34.
    Zakel S, Rienitz O, Güttler B, Stosch R. Double isotope dilution surface-enhanced Raman scattering as a reference procedure for the quantification of biomarkers in human serum. Analyst. 2011;136:3956–61.CrossRefGoogle Scholar
  35. 35.
    Kratky O, Leopold H, Stabinger H. Dichtemessungen an Flüssigkeiten und Gasen auf 10–6 g/cm3 bei 0,6cm3 Präparatvolumen. Z Angew Phys. 1969;27:273–7.Google Scholar
  36. 36.
    Braunitzer G. The molecular weight of haemoglobin erythrocytometric methods and their standardization. T Stand Comm Proc Symp 18 9th Congr Eur Soc Haematol. 1963;59.Google Scholar
  37. 37.
    Wolf HU, Link H, Lang W. Preparation, purification and characterization of chlorohaemin. J Biol Chem. 1992;373:305.Google Scholar
  38. 38.
    Zijlstra WG, van Kampen EJ. Standardisation of hemoglobinometry: I. The extinction coefficient of hemiglobincyanide at 540 nm: ε540 HiCN. Clin Chim Acta. 1960;5:719.Google Scholar
  39. 39.
    van Kampen EJ, Zijlstra WG. Standardisation of hemoglobinometry: II. The hemiglobincyanide method. Clin Chim Acta. 1961;6:538.CrossRefGoogle Scholar
  40. 40.
    Arsene CG, Ohlendorf R, Burkitt W, Pritchard C, Henrion A, O’Connor G, et al. Protein quantification by isotope dilution mass spectrometry of proteolytic fragments: cleavage rate and accuracy. Anal Chem. 2009;80(11):4154–60.CrossRefGoogle Scholar
  41. 41.
    Frank C, Rienitz O, Jährling R, Schiel D, Zakel S. Reference measurement procedures for the iron saturation in human transferrin based on IDMS and Raman scattering. Metallomics. 2012;4:1239–44.CrossRefGoogle Scholar
  42. 42.
    BIPM. Evaluation of measurement data—guide to the expression of uncetrainty in measurement. JCGM 100:2008.Google Scholar
  43. 43.
    BIPM. CCQM Guidance note: estimation of a consensus KCRV and associated Degrees of Equivalence. www.bipm.org/cc/CCQM/Allowed/19/CCQM13-22_Consensus_KCRV_v10.pdf2013.
  44. 44.
    Ratel G. Evaluation of the uncertainty of the degree of equivalence. Metrologia. 2005;42:140–4.CrossRefGoogle Scholar
  45. 45.
    Rienitz O, et al. Final report in CCQM-K87: mono-elemental calibration solutions. Metrologia. 2012;49.Google Scholar
  46. 46.
    Witt K, Wolf HU, Heuck C, Kammel M, Kummrow A, Neukammer J. Establishing traceability of photometric absorbance measurements for accurate determination of the haemoglobin concentration in blood. Metrologia. 2013;50(5):539–48.CrossRefGoogle Scholar
  47. 47.
    Vogel J. In: Nelms SM, editor. Inductively coupled plasma mass spectrometry handbook. Oxford: Blackwell; 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Claudia Frank
    • 1
    Email author
  • Christine Brauckmann
    • 1
  • Marie Palos
    • 2
  • Cristian G. Arsene
    • 1
  • Joerg Neukammer
    • 3
  • Maria Estela del Castillo Busto
    • 2
  • Sabine Zakel
    • 1
  • Claudia Swart
    • 1
  • Bernd Güttler
    • 1
  • Rainer Stosch
    • 1
  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany
  2. 2.Laboratoire National de Métrologie et d’essais (LNE)Paris Cedex 15France
  3. 3.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany

Personalised recommendations