Skip to main content
Log in

Application of HS-SPME-GC-MS method for the detection of active moulds on historical parchment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The goal of this work was to analyse the profile of microbial volatile organic compounds (MVOCs) emitted by moulds growing on parchment samples, in search of particular volatiles mentioned in the literature as indicators of active mould growth. First, the growth of various moulds on samples of parchment was assessed. Those species that showed collagenolytic activity were then inoculated on two types of media: samples of parchment placed on media and on media containing amino acids that are elements of the structure of collagen. All samples were prepared inside 20-ml vials (closed system). In the first case, the media did not contain any sources of organic carbon, nitrogen, or sulphur, i.e. parchment was the only nutrient for the moulds. A third type of sample was historical parchment prepared in a Petri dish without a medium and inoculated with a collagenolytically active mould (open system). The MVOCs emitted by moulds were sampled with the headspace–SPME method. Volatiles extracted on DVB/CAR/PDMS fibres were analysed in a gas chromatography–mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on parchment objects. To the best of our knowledge, this is the first work to measure MVOCs emitted by moulds growing on parchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Možir A, Gonzalez L, Kralj Cigić I, Wess TJ, Rabin I, Hahn O, et al. A study of degradation of historic parchment using small-angle X-ray scattering, synchrotron-IR and multivariate data analysis. Anal Bioanal Chem. 2012;402:1559–66. doi:10.1007/s00216-011-5392-6.

    Article  Google Scholar 

  2. Budrugeac P, Miu L, Popescu C, Wortmann FJ. Identification of collagen-based materials that are supports of cultural and historical objects. J Therm Anal Calorim. 2004;77(3):975–85.

    Article  CAS  Google Scholar 

  3. Popescu C, Budrugeac P, Wortmann FJ, Miu L, Demco DE, Baias M. Assessment of collagen-based materials which are supports of cultural and historical objects. Polym Degrad Stab. 2008;93(5):976–82. doi:10.1016/j.polymdegradstab.2008.01.031.

    Article  CAS  Google Scholar 

  4. Ghioni C, Hiller JC, Kennedy CJ, Aliev AE, Odlyha M, Boulton M, et al. Evidence of a distinct lipid fraction in historical parchments: a potential role in degradation? J Lipid Res. 2005;46:2726–34. doi:10.1194/jlr.M500331-JLR200.

    Article  CAS  Google Scholar 

  5. Bailey AJ, Paul RG. Collagen: a not so simple protein. J Soc Leather Technol Chem. 1998;82:104–10.

    CAS  Google Scholar 

  6. Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl Microbiol Biotechnol. 2013;97:9637–46.

    Article  CAS  Google Scholar 

  7. Pinzari F, Colaizzi P, Maggi O, Persiani A, Schütz R, Rabin I. Fungal bioleaching of mineral components in a twentieth-century illuminated parchment. Anal Bioanal Chem. 2012;402:1541–50. doi:10.1007/s00216-011-5263-1.

    Article  CAS  Google Scholar 

  8. Pinzari F, Montanari M, Michaelsen A, Piñar G. Analytical protocols for the assessment of biological damage in historical documents. Coalition. 2010;19:6–13.

    Google Scholar 

  9. Abrusci C, Martin-Gonzalez A, Del Amob A, Catalina F, Collado J, Platas G. Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeterior Biodegrad. 2005;56:58–68. doi:10.1016/j.ibiod.2005.05.004.

    Article  CAS  Google Scholar 

  10. Kraková L, Chovanová K, Selim SA, Simonovicová A, Puskarová A, Maková A, et al. A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. Int Biodeterior Biodegrad. 2012;70:117–25.

    Article  Google Scholar 

  11. Wilkins K, Larsen K, Simkus M. Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere. 2000;41(3):437–46.

    Article  CAS  Google Scholar 

  12. Polizzi V, Adams A, Picco AM, Adriaens E, Lenoir J, Van Peteghem C, et al. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Build Environ. 2011;46:945–54.

    Article  Google Scholar 

  13. Lavine BK, Mirjankar N, LeBouf R, Rossner A. Prediction of mold contamination from microbial volatile organic compound profiles using solid phase microextraction and gas chromatography/mass spectrometry. Microchem J. 2012;103:37–41.

    Article  CAS  Google Scholar 

  14. Polizzi V, Delmulle B, Adams A, Moretti A, Susca A, Picco AM, et al. JEM spotlight: fungi, mycotoxins and microbial volatile organic compounds in moldy interiors from water-damaged buildings. J Environ Monit. 2009;11:1849–58.

    Article  CAS  Google Scholar 

  15. Sunnesson A-L. Volatile metabolites from microorganisms in indoor environments. Sampling, analysis and identification. PhD thesis. Department of Analytical Chemistry and National Institute for Working Life, Analytical Chemistry Division, Umeå, University of Umeå, 1995.

  16. Wilkins K, Nielsen EM, Wolkoff P. Patterns in volatile organic compounds in dust from moldy buildings. Indoor Air. 1997;7:128–34.

    Article  CAS  Google Scholar 

  17. Wilkins K, Larsen K. Variation of volatile organic compound patterns of mold species from damp buildings. Chemosphere. 1995;31(5):3225–36.

    Article  CAS  Google Scholar 

  18. Schuchardt S, Kruse H. Quantitative volatile metabolite profiling of common indoor fungi: relevancy for indoor air analysis. J Basic Microbiol. 2009;49:350–62.

    Article  CAS  Google Scholar 

  19. Fiedler K, Schütz E, Geh S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health. 2001;204:111–21.

    Article  CAS  Google Scholar 

  20. Bingley GD, Verran J, Munro LJ, Craig E, Banks CE. Identification of microbial volatile organic compounds (MVOCs) emitted from fungal isolates found on cinematographic film. Anal Methods. 2012;4:1265–71. doi:10.1039/C2AY05826J.

    Article  CAS  Google Scholar 

  21. Canhoto O, Pinzari F, Fanelli C, Mangan N. Application of electronic nose technology for the detection of fungal contamination in library paper. Int Biodeterior Biodegrad. 2004;54:303–9. doi:10.1016/j.ibiod.2004.04.001.

    Article  Google Scholar 

  22. Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, et al. The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegrad. 2015;99:1–7. doi:10.1016/j.ibiod.2014.12.012.

    Article  Google Scholar 

  23. Weary MA, Canby CM. Keratinophilic activity of Trichophyton schoenleini, T. rubrum and T. mentagrophytes. J Invest Dermatol. 1967;48:240–8.

    Article  CAS  Google Scholar 

  24. Safranek WW, Goos RD. Degradation of wool by saprotrophic fungi. Can J Microbiol. 1981;28:137–40.

    Article  Google Scholar 

  25. Mathews MB. Connective Tissue. Macromolecular structure and evolution. Berlin: Springer- Verlag; 1975, Chapter 3 Collagen.

  26. Dolgin B, Bulatov V, Schechter I. Non-destructive assessment of parchment deterioration by optical methods. Anal Bioanal Chem. 2007;388:1885–96. doi:10.1007/s00216-007-1410-0.

    Article  CAS  Google Scholar 

  27. Sawoszczuk T, Syguła-Cholewińska J, Del Hoyo-Meléndez JM. Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: application to historical objects. J Chromatogr A. 2015;1409:30–45. doi:10.1016/j.chroma.2015.07.059.

    Article  CAS  Google Scholar 

  28. Betancourt DA, Krebs K, Moore SA, Martin SM, Microbial volatile organic compound emissions from Stachybotrys chartarum growing on gypsum wallboard and ceiling tile, BMC Microbio. 2013;13:283. doi:10.1186/1471-2180-13-283. http://www.biomedcentral.com/1471-2180/13/283. Accessed 16.04.2015.

  29. Matysik S, Herbarth O, Mueller A. Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods. 2008;75:182–7. doi:10.1016/j.mimet.2008.05.027.

    Article  CAS  Google Scholar 

  30. Personal communication with J. Pawliszyn during workshops: Microextraction to solid phase (SPME) in analyses of food and environment.

  31. Zyska B. Fungi isolated from library materials: a review of literature. Int Biodeterior Biodegrad. 1997;40(1):43–51. doi:10.1016/S0964-8305(97)00061-9

    Article  Google Scholar 

  32. Demyttenaere JCR, Moriña RM, De Kimpe N, Sandra P. Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A. 2004;1027:147–54. doi:10.1016/j.chroma.2003.08.105.

    Article  CAS  Google Scholar 

  33. Kuske M, Romain A-C, Nicolas J. Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build Environ. 2005;40:824–31. doi:10.1016/j.buildenv.2004.08.012.

    Article  Google Scholar 

  34. Korpi A, Järnberg J, Pasanen A-L. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39:39–193. doi:10.1080/10408440802291497.

    Article  Google Scholar 

  35. Polizzi V, Adams A, Malysheva S, De Saeger S, Van Peteghem C, Moretti A, et al. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol. 2012;116:941–53. doi:10.1016/j.funbio.2012.06.001.

    Article  CAS  Google Scholar 

  36. Muhsin TM, Salih TH. Exocellular enzyme activity of dermatophytes and other fungi isolated from ruminants in Southern Iraq. Mycopathologia. 2000;150:49–52.

    Article  Google Scholar 

  37. Piñar G, Sterflinger K, Pinzari F. Unmasking the measles-like parchment discoloration: molecular and microanalytical approach. Environ Microbiol. 2015;17(2):427–43.

    Article  Google Scholar 

  38. Šimonovičová A, Kraková L, Pangallo D, Majorošová M, Piecková E, Bodoriková S, et al. Fungi on mummified human remains and in the indoor air in the Kuffner family crypt in Sládkovičovo (Slovakia). Int Biodeterior Biodegrad. 2015;99:157–64. doi:10.1016/j.ibiod.2014.12.011.

    Article  Google Scholar 

  39. Yakovleva MB, Khoang TL, Nikitina ZK. Collagenolytic activity in several species of deuteromycetes under various storage conditions. Appl Biochem Microbiol. 2006;42(4):489–92.

    Article  Google Scholar 

  40. Schleibinger H, Laußmann D, Brattig C, Mangler M, Eis D, Ruden H. Emission patterns and emission rates of MVOC and the possibility for predicting hidden mold damage? Indoor Air. 2005;15:98–104.

    Article  Google Scholar 

  41. Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler JP, et al. Volatile profiles of fungi—chemotyping of species and ecological functions. Fungal Genet Biol. 2013;54:25–33. doi:10.1016/j.fgb.2013.02.005.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science Centre in Poland which has allowed implementing the project entitled Investigations of biodeterioration of historical objects based on analysis of volatile organic compounds emitted by moulds, decision reference DEC–2012/05/B/HS2/04094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Sawoszczuk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawoszczuk, T., Syguła-Cholewińska, J. & del Hoyo-Meléndez, J.M. Application of HS-SPME-GC-MS method for the detection of active moulds on historical parchment. Anal Bioanal Chem 409, 2297–2307 (2017). https://doi.org/10.1007/s00216-016-0173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0173-x

Keywords