Skip to main content

Advertisement

Log in

Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cry1Ab toxin is commonly expressed in genetically modified crops in order to control chewing pests. At present, the detection method with enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibody cannot specifically detect Cry1Ab toxin for Cry1Ab’s amino acid sequence and spatial structure are highly similar to Cry1Ac toxin. In this study, based on molecular design, a novel hapten polypeptide was synthesized and conjugated to keyhole limpet hemocyanin (KLH). Then, through animal immunization with this antigen, a monoclonal antibody named 2C12, showing high affinity to Cry1Ab and having no cross reaction with Cry1Ac, was produced. The equilibrium dissociation constant (K D) value of Cry1Ab toxin with MAb 2C12 was 1.947 × 10−8 M. Based on this specific monoclonal antibody, a sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for the specific determination of Cry1Ab toxin and the LOD and LOQ values were determined as 0.47 ± 0.11 and 2.43 ± 0.19 ng mL−1, respectively. The average recoveries of Cry1Ab from spiked rice leaf and rice flour samples ranged from 75 to 115%, with coefficient of variation (CV) less than 8.6% within the quantitation range (2.5–100 ng mL−1), showing good accuracy for the quantitative detection of Cry1Ab toxin in agricultural samples. In conclusion, this study provides a new approach for the production of high specific antibody and the newly developed DAS-ELISA is a useful method for Cry1Ab monitoring in agriculture products.

Establishment of a DAS-ELISA for the specific detecting of Bacillus thuringiensis (Bt) Cry1Ab toxin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Hua G, Masson L, Jurat-Fuentes JL, Schwab G, Adang MJ. Binding analyses of Bacillus thuringiensis cry delta-endotoxins using brush border membrane vesicles of Ostrinia nubilalis. Appl Environ Microbiol. 2001;67:872–9.

    Article  CAS  Google Scholar 

  2. Höfte H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989;53:242–55.

    Google Scholar 

  3. Schnepf E, Crickmore NV, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62:775–806.

    CAS  Google Scholar 

  4. Martin PAW, Travers RS. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol. 1989;55:2437–42.

    CAS  Google Scholar 

  5. Rausell C, Pardo-López L, Sánchez J, Muñoz-Garay C, Morera C, Soberón M, et al. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane inserted pore channel. J Biol Chem. 2004;279:55168–75.

    Article  CAS  Google Scholar 

  6. Douville M, Gagné F, Masson L, McKay J, Blaise C. Tracking the source of Bacillus thuringiensis Cry1Ab endotoxin in the environment. Biochem Syst Ecol. 2005;33:219–32.

    Article  CAS  Google Scholar 

  7. Knowles BH. Mechanism of action of Bacillus thuringiensis insecticidal d-endotoxins. Adv Insect Physiol. 1994;24:274–308.

    Google Scholar 

  8. Kumar PA, Sharma RP, Malik VS. The insecticidal proteins of Bacillus thuringiensis. Adv Appl Microbiol. 1996;42:1–43.

    Article  CAS  Google Scholar 

  9. McClintock JT, Schaffer CR, Sjoblad RD. A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. Pestic Sci. 1995;45:95–105.

    Article  CAS  Google Scholar 

  10. Kupier HA, Kleter GA, Noteborn HP, Kok EJ. Assessment of the food safety issues related to genetically modified foods. Plant J. 2001;27:503–28.

    Article  Google Scholar 

  11. Sacchi VF, Parenti P, Hanozet GM, Giordana B, Luthy P, Wolfersberger MG. Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 1986;204:213–8.

    Article  CAS  Google Scholar 

  12. Shimada N, Miyamoto K, Kanda K, Murata H. Binding of Cry1Ab toxin, a Bacillus thuringiensis insecticidal toxin, to proteins of the bovine intestinal epithelial cell: an in vitro study. Appl Entomol Zool. 2006;41:295–301.

    Article  CAS  Google Scholar 

  13. Shimada N, Miyamoto K, Kanda K, Murata H. Bacillus thuringiensis insecticidal crylab toxin does not affect the membrane integrity of the mammalian intestinal epithelial cells: an in vitro study. In Vitro Cell Dev Biol Anim. 2006;42:45–9.

    CAS  Google Scholar 

  14. Soberon M, Gill SS, Bravo A. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci. 2009;66:1337–49.

    Article  CAS  Google Scholar 

  15. Betz FS, Hammond BG, Fuchs RL. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol. 2000;32:156–73.

    Article  CAS  Google Scholar 

  16. Garcia MA, Altieri MA. Transgenic crops: implications for biodiversity and sustainable agriculture. Bull Sci Technol Soc. 2005;25:335–53.

    Article  Google Scholar 

  17. Edge JM, Benedict JH, Carroll JP, Reding HK. Bollgard cotton: an assessment of global economic, environmental, and social benefits. J Cotton Sci. 2001;5:121–36.

    Google Scholar 

  18. Huang J, Hu R, Pray C, Qiao F, Rozelle S. Biotechnology as an alternative to chemical pesticides, a case study of Bt cotton in China. Agric Econ. 2003;29:55–67.

    Article  Google Scholar 

  19. Naranjo SE. Impacts of Bt crops on non-target invertebrates and insecticide use patterns. Perspect AgricVet Sci Nutr Nat Res. 2009;4:1–11.

    Google Scholar 

  20. Gaskell G, Bauer MW, Durant J, Allum NC. Worlds apart? The reception of genetically modified foods in Europe and the US. Science. 1999;285:384–6.

    Article  CAS  Google Scholar 

  21. Haslberger AG. Monitoring and labeling for genetically modified products. Science. 2000;287:431–2.

    Article  CAS  Google Scholar 

  22. König A, Cockburn A, Crevel RWR, Debruyne E, Grafstroem R, Hammerling U, et al. Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol. 2004;42:1047–88.

    Article  Google Scholar 

  23. Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, et al. Unintended effects and their detection in genetically modified crops. Food Chem Toxicol. 2004;42:1089–125.

    Article  CAS  Google Scholar 

  24. Peterson G, Cunningham S, Deutsch L, Erickson J, Quinlan A, Raez-Luna E, et al. The risks and benefits of genetically modified crops: a multidisciplinary perspective. Conserv Ecol. 2000;4:1–15.

    Google Scholar 

  25. Conway G. Genetically modified crops: risks and promise. Conserv Ecol. 2000;4:1–11.

    Google Scholar 

  26. Kaufman PB, Chang SC, Kirakosyan A. Risks and benefits associated with genetically modified (GM) plants. Recent Adv Plant Biotechnol. 2009;13:333–46.

    Article  Google Scholar 

  27. Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol. 2011;31:528–33.

    Article  CAS  Google Scholar 

  28. Marmiroli N, Maestri E, Gulli M, Malcevschi A, Peano C, Bordoni R, et al. Methods for detection of GMOs in food and feed. Anal Bioanal Chem. 2008;392:369–84.

    Article  CAS  Google Scholar 

  29. Hübner P, Studer E, Häfliger D, Stadler M, Wolf C, Looser M. Detection of genetically modified organisms in food: critical points for quality assurance. Accred Qual Assur. 1999;4:292–8.

    Article  Google Scholar 

  30. Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, et al. Detection and traceability of genetically modified organisms in the food production chain. Food Chem Toxicol. 2004;42:1157–80.

    Article  CAS  Google Scholar 

  31. Zhu M, Li M, Li G, Zhou Z, Liu H, Lei H, et al. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Microchim Acta. 2015;182:2451–9.

    Article  CAS  Google Scholar 

  32. Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize. Anal Bioanal Chem. 2006;384:1269–75.

    Article  CAS  Google Scholar 

  33. Shan G, Kmbrey SK, Schafer BW. A highly specific enzyme-linked immunosorbent assay for the detection of Cry1Ac insecticidal crystal protein in transgenic WideStrike cotton. J Agric Food Chem. 2007;55:5974–9.

    Article  CAS  Google Scholar 

  34. Walschus U, Witt S, Wittmann C. Development of monoclonal antibodies against Cry1Ab protein from Bacillus thuringiensis and their application in an ELISA for detection of transgenic Bt-maize. Food Agric Immunol. 2002;14:231–40.

    Article  CAS  Google Scholar 

  35. Zwahlen C, Hilbeck A, Gugerli P, Nentwig W. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol. 2003;12:765–75.

    Article  CAS  Google Scholar 

  36. Ermolli M, Prospero A, Balla B, Querci M, Mazzeo A, Van Den Eede G. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification. Food Addit Contam. 2006;23:876–82.

    Article  CAS  Google Scholar 

  37. Fantozzi A, Ermolli M, Marini M, Scotti D, Balla B, Querci M, et al. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize. J Agric Food Chem. 2007;55:1071–6.

    Article  CAS  Google Scholar 

  38. Volpe G, Ammida N, Moscone D, Occhigrossi L, Palleschi G. Development of an immunomagnetic electrochemical sensor for detection of Bt-Cry1Ab/Cry1Ac proteins in genetically modified corn samples. Anal Lett. 2006;39:1599–609.

    Article  CAS  Google Scholar 

  39. Zhu X, Chen L, Shen P, Jia J, Zhang D, Yang L. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. J Agric Food Chem. 2011;59:2184–9.

    Article  CAS  Google Scholar 

  40. Shintani S, Ohyama H, Zhang X, McBride J, Matsuo K, Tsuji T, et al. p12DOC-1 is a novel cyclin-dependent kinase 2-associated protein. Mol Cell Biol. 2000;20:6300–7.

    Article  CAS  Google Scholar 

  41. Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981;78:3824–8.

    Article  CAS  Google Scholar 

  42. Welling GW, Weijer WJ, Van Der Zee R, Welling-Wester S. Prediction of sequential antigenic regions in proteins. FEBS Lett. 1985;188:215–8.

    Article  CAS  Google Scholar 

  43. Nowinski RC, Lostrom ME, Tam MR, Stone MR, Burnette WN. The isolation of hybrid cell lines producing monoclonal antibodies against the p15 (E) protein of ecotropic murine leukemia viruses. Virology. 1979;93:113–26.

    Article  Google Scholar 

  44. Kǒhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  Google Scholar 

  45. Mercader JV, Suárez-Pantaleón C, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Production and characterization of monoclonal antibodies specific to the strobilurin pesticide pyraclostrobin. J Agric Food Chem. 2008;56:7682–90.

    Article  CAS  Google Scholar 

  46. Boscia D, Aslouj E, Elicio V, Savino V, Castellano MA, Martelli GP. Production, characterization and use of monoclonal antibodies to grapevine virus A. Arch Virol. 1992;127:185–94.

    Article  CAS  Google Scholar 

  47. Groopman JD, Trudel LJ, Donahue PR, Marshak-Rothstein A, Wogan GN. High-affinity monoclonal antibodies for aflatoxins and their application to solid-phase immunoassays. Proc Natl Acad Sci U S A. 1984;81:7728–31.

    Article  CAS  Google Scholar 

  48. Dong S, Zhang C, Zhang X, Liu Y, Zhong J, Xie Y, et al. Production and characterization of monoclonal antibody broadly recognizing Cry1 toxins using designed polypeptide as hapten. Anal Chem. 2016;88:7023–32.

    Article  CAS  Google Scholar 

  49. Kumar R. A real-time immuno-PCR assay for the detection of transgenic Cry1Ab protein. Eur Food Res Technol. 2012;234:101–8.

    Article  CAS  Google Scholar 

  50. Guertler P, Paul V, Albrecht C, Meyer HH. Sensitive and highly specific quantitative real-time PCR and ELISA for recording a potential transfer of novel DNA and Cry1Ab protein from feed into bovine milk. Anal Bioanal Chem. 2009;393:1629–38.

    Article  CAS  Google Scholar 

  51. Galve R, Camps F, Sanchez-Baeza F, Marco MP. Development of an immunochemical technique for the analysis of trichlorophenols using theoretical models. Anal Chem. 2000;72:2237–46.

    Article  CAS  Google Scholar 

  52. Beier RC, Ripley LH, Young CR, Kaiser CM. Production, characterization, and cross-reactivity studies of monoclonal antibodies against the coccidiostat nicarbazin. J Agric Food Chem. 2001;49:4542–52.

    Article  CAS  Google Scholar 

  53. Adrian J, Font H, Diserens JM, Sánchez-Baeza F, Marco MP. Generation of broad specificity antibodies for sulfonamide antibiotics and development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of milk samples. J Agric Food Chem. 2009;57:385–94.

    Article  CAS  Google Scholar 

  54. Franek M, Diblikova I, Cernoch I, Vass M, Hruska K. Broad-specificity immunoassays for sulfonamide detection: immunochemical strategy for generic antibodies and competitors. Anal Chem. 2006;78:1559–67.

    Article  CAS  Google Scholar 

  55. Xu ZL, Shen YD, Zheng WX, Beier RC, Xie GM, Dong JX, et al. Broad-specificity immunoassay for O, O-diethyl organophosphorus pesticides: application of molecular modeling to improve assay sensitivity and study antibody recognition. Anal Chem. 2010;82:9314–21.

    Article  CAS  Google Scholar 

  56. Pinacho DG, Sánchez-Baeza F, Marco MP. Molecular modeling assisted hapten design to produce broad selectivity antibodies for fluoroquinolone antibiotic. Anal Chem. 2012;84:4527–34.

    Article  CAS  Google Scholar 

  57. Li J, Liu J, Zhang HC, Li H, Wang JP. Broad specificity indirect competitive immunoassay for determination of nitrofurans in animal feeds. Anal Chim Acta. 2010;678:1–6.

    Article  CAS  Google Scholar 

  58. Cao L, Kong D, Sui J, Jiang T, Li Z, Ma L, et al. Broad-specific antibodies for a generic immunoassay of quinolone: development of a molecular model for selection of haptens based on molecular field-overlapping. Anal Chem. 2009;81:3246–51.

    Article  CAS  Google Scholar 

  59. Hertzog PJ, Shaw A, Lindsay Smith JR, Garner RC. Improved conditions for the production of monoclonal antibodies to carcinogen-modified DNA, for use in enzyme-linked immunosorbent assays (ELISA). J Immunol Methods. 1983;62:49–58.

    Article  CAS  Google Scholar 

  60. Heussner AH, Moeller I, Day BW, Dietrich DR, O’Brien E. Production and characterization of monoclonal antibodies against ochratoxin B. Food Chem Toxicol. 2007;45:827–33.

    Article  CAS  Google Scholar 

  61. Cliquet P, Cox E, Haasnoot W, Schacht E, Goddeeris BM. Extraction procedure for sulfachloropyridazine in porcine tissues and detection in a sulfonamide-specific enzyme-linked immunosorbent assay (ELISA). Anal Chim Acta. 2003;494:21–8.

    Article  CAS  Google Scholar 

  62. Ramirez-Romero R, Desneux N, Chaufaux J, Kaiser L. Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae (Homoptera: Aphididae) and Cry1Ab toxin detection. Pestic Biochem Physiol. 2008;91:110–5.

    Article  CAS  Google Scholar 

  63. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62:807–13.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (General Program) (No. 31371778), the Special Fund for Agro-scientific Research in the Public Interest (201303088), the Jiangsu Province Natural Science Foundation (BK20131333), the Key Technology R&D Program of Jiangsu Province (No. BE2014722), the National Natural Science Foundation of China (No. 31301703), and the Independent Innovation Project of Jiangsu Province (CX (14) 5068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjin Liu.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zhang, X., Liu, Y. et al. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Anal Bioanal Chem 409, 1985–1994 (2017). https://doi.org/10.1007/s00216-016-0146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0146-0

Keywords