Skip to main content
Log in

Development of a lateral flow immunoassay for rapid diagnosis of potato blackleg caused by Dickeya species

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Early detection of potato infections is essential for effective disease management. The aim of this study was to develop a lateral flow immunoassay (LFIA) for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani. Polyclonal antibodies specific to different strains of Dickeya were obtained from rabbits after immunization with bacterial cells of D. dianthicola and D. solani. Enzyme-linked immunosorbent assay testing with use of a wide range of bacterial species showed that the polyclonal antibodies detect closely related strains of D. dianthicola and D. solani. Cross-reactivity with widespread pathogenic bacteria (nine species) and saprophytes of healthy potato plants was not detected. The LFIA based on the obtained antibodies and gold nanoparticles with average diameter of 20 nm was developed. Under optimized conditions, the LFIA method enabled the analysis of potato extracts within 10 min, with a visual limit of detection of 1 × 105 CFU/ml for leaves and 4 × 105 CFU/ml for tubers. The assay was tested on potato stem and tuber extracts, and the results of the LFIA were confirmed in 92.1% of samples using the real-time polymerase chain reaction. The findings confirmed that the developed LFIA could be used for monitoring blackleg infection without the need for special equipment or skills.

The developed lateral flow immunoassay is an efficient tool for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Charermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Gajanandana O, et al. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens. Anal Chem. 2014;86(14):7049–56.

    Article  Google Scholar 

  2. De Boer SH, Lopez MM. New grower-friendly methods for plant pathogen monitoring. Annu Rev Phytopathol. 2012;50:197–218.

    Article  Google Scholar 

  3. Lopez MM, Bertolini E, Olmos A, Caruso P, Gorris MT, Llop P, et al. Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol. 2003;6(4):233–43.

    Article  CAS  Google Scholar 

  4. Nezhad AS. Future of portable devices for plant pathogen diagnosis. Lab Chip. 2014;14(16):2887–904.

    Article  CAS  Google Scholar 

  5. Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. TrAC Trends Anal Chem. 2014;55:81–93.

    Article  CAS  Google Scholar 

  6. Shan S, Lai W, Xiong Y, Wei H, Xu H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem. 2015;63(3):745–53.

    Article  CAS  Google Scholar 

  7. Byzova NA, Safenkova IV, Chirkov SN, Avdienko VG, Guseva AN, Mitrofanova IV, et al. Interaction of plum pox virus with specific colloidal gold-labeled antibodies and development of immunochromatographic assay of the virus. Biochem Mosc. 2010;75(11):1393–403.

    Article  CAS  Google Scholar 

  8. Byzova NA, Safenkova IV, Chirkov SN, Zherdev AV, Blintsov AN, Dzantiev BB, et al. Development of immunochromatographic test systems for express detection of plant viruses. Appl Biochem Microbiol. 2009;45(2):204–9.

    Article  CAS  Google Scholar 

  9. Danks C, Barker I. On-site detection of plant pathogens using lateral-flow devices. EPPO Bull. 2000;30(3–4):421–6.

    Article  Google Scholar 

  10. Hodgetts J, Karamura G, Johnson G, Hall J, Perkins K, Beed F, et al. Development of a lateral flow device for in-field detection and evaluation of PCR-based diagnostic methods for Xanthomonas campestris pv. musacearum, the causal agent of banana xanthomonas wilt. Plant Pathol. 2015;64(3):559–67.

    Article  CAS  Google Scholar 

  11. Safenkova IV, Zaitsev IA, Pankratova GK, Varitsev YA, Zherdev AV, Dzantiev BB. Lateral flow immunoassay for rapid detection of potato ring rot caused by Clavibacter michiganensis subsp sepedonicus. Appl Biochem Microbiol. 2014;50(6):675–82.

    Article  CAS  Google Scholar 

  12. EPPO. Diagnostic protocols for regulated pests, EPPO standard PM 7. In: EPPO standards: general phytosanitary measures. Paris: EPPO; 2014.

    Google Scholar 

  13. Narayanasamy P. Diagnosis of viral and viroid diseases of plants. In: Microbial plant pathogens—detection and disease diagnosis. Netherlands: Springer; 2011. p. 295–312.

    Chapter  Google Scholar 

  14. Safenkova IV, Pankratova GK, Zaitsev IA, Varitsev YA, Vengerov YY, Zherdev AV, et al. Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Anal Bioanal Chem. 2016;408(22):6009–17.

  15. Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2015;5:770.

  16. Panferov VG, Safenkova IV, Varitsev YA, Drenova NV, Kornev KP, Zherdev AV, et al. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers. Talanta. 2016;152:521–30.

    Article  CAS  Google Scholar 

  17. EPPO. EPPO A1 and A2 lists of pests recommended for regulation as quarantine pests, EPPO standard PM 1/2. In: EPPO standards: general phytosanitary measures. Paris: EPPO; 2014.

    Google Scholar 

  18. Narayanasamy P. Diagnosis of bacterial diseases of plants. In: Microbial plant pathogens—detection and disease diagnosis. Netherlands: Springer; 2011. p. 233–46.

    Chapter  Google Scholar 

  19. Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol. 2005;55(Pt 4):1415–27.

    Article  CAS  Google Scholar 

  20. Czajkowski R, Perombelon MCM, Jafra S, Lojkowska E, Potrykus M, van der Wolf JM, et al. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann Appl Biol. 2015;166:18–38.

    Article  CAS  Google Scholar 

  21. Gill ED, Schaerer S, Dupuis B. Factors impacting blackleg development caused by Dickeya spp. in the field. Eur J Plant Pathol. 2014;140(2):317–27.

    Article  Google Scholar 

  22. Kirk WW. Introduction to 2013 symposium on bacterial diseases of potatoes. Am J Potato Res. 2015;92(2):215–7.

    Article  Google Scholar 

  23. Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hélias V, Pirhonen M, et al. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 2011;60(3):385–99.

    Article  Google Scholar 

  24. Toth I, Saddler G, Elphinstone J. Investigating the biology and appropriate control of Dickeya species affecting GB potatoes. Kenilworth: Potato Council; 2014. p. 87.

    Google Scholar 

  25. Dupuis B, Schaerer S, Gilliand H, Cazelles O. The Dickeya and Pectobacterium situation in Switzerland. Paper presented at the In Dickeya Workshop, Emmeloord, The Netherlands; 2010.

  26. Palacio-Bielsa A, Cambra MA, Lopez MM. PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). J Plant Pathol. 2009;91:249–97.

    CAS  Google Scholar 

  27. Parkinson N, Pritchard L, Bryant R, Toth I, Elphinstone J. Epidemiology of Dickeya dianthicola and Dickeya solani in ornamental hosts and potato studied using variable number tandem repeat analysis. Eur J Plant Pathol. 2015;141(1):63–70.

    Article  Google Scholar 

  28. Potrykus M, Sledz W, Golanowska M, Slawiak M, Binek A, Motyka A, et al. Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Ann Appl Biol. 2014;165:474–87.

    Article  CAS  Google Scholar 

  29. Horka M, Salplachta J, Karasek P, Kubesova A, Horky J, Matouskova H, et al. Combination of capillary isoelectric focusing in a tapered capillary with MALDI-TOF MS for rapid and reliable identification of Dickeya species from plant samples. Anal Chem. 2013;85(14):6806–12.

    Article  CAS  Google Scholar 

  30. Peters J, Sledz W, Bergervoet JHW, van der Wolf JM. An enrichment microsphere immunoassay for the detection of Pectobacterium atrosepticum and Dickeya dianthicola in potato tuber extracts. Eur J Plant Pathol. 2007;117:97–107.

    Article  CAS  Google Scholar 

  31. Fraaije BA, Birnbaum Y, Franken AAJM, VandenBulk RW. The development of a conductimetric assay for automated detection of metabolically active soft rot Erwinia spp in potato tuber peel extracts. J Appl Bacteriol. 1996;81:375–82.

    CAS  Google Scholar 

  32. Karlov A, Ignatov A, Karlov G, Pekhtereva E, Matveeva E, Schaad N, et al. Diagnostics of potato bacterial pathogen Dickeya dianthicola. Izvestiya TSKhA. 2012;(special issue):34–43. (In Russian)

  33. Schaad NW, Jones JB, Chun W. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. St. Paul: APS Press; 2001.

    Google Scholar 

  34. Hermanson GT. Chapter 3—the reactions of bioconjugation. In: Hermanson GT, editor. Bioconjugate techniques. 3rd ed. Boston: Academic; 2013. p. 229–58.

    Chapter  Google Scholar 

  35. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–2.

    Article  CAS  Google Scholar 

  36. Safenkova IV, Zherdev AV, Dzantiev BB. Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J Immunol Methods. 2010;357(1–2):17–25.

    Article  CAS  Google Scholar 

  37. Humphris SN, Cahill G, Elphinstone JG, Kelly R, Parkinson NM, Pritchard L, et al. Detection of the bacterial potato pathogens Pectobacterium and Dickeya spp. using conventional and real-time PCR. Methods Mol Biol (Clifton, NJ). 2015;1302:1–16.

    Article  Google Scholar 

  38. Pritchard L, Humphris S, Saddler GS, Parkinson NM, Bertrand V, Elphinstone JG, et al. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol. 2013;62(3):587–96.

    Article  CAS  Google Scholar 

  39. Brierley J, Lees A, Hilton A, Wale S, Peters J, Elphinstone J, et al. Improving decision making for the management of potato diseases using realtime diagnostics. Oxford: Oxford Business Park; 2008.

    Google Scholar 

  40. Safenkova I, Zherdev A, Dzantiev B. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem. 2012;403(6):1595–605.

    Article  CAS  Google Scholar 

  41. Rivas L, Escosura-Muñiz Adl, Pons J, Merkoçi A. Chapter 14—Lateral flow biosensors based on gold nanoparticles. In: Miguel V, Ángela IL-L, editors. Comprehensive analytical chemistry, vol 66. Amsterdam: Elsevier; 2014. pp. 569–605.

  42. Lou S, Ye JY, Li KQ, Wu AG. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst. 2012;137(5):1174–81.

    Article  CAS  Google Scholar 

  43. Boulos SP, Davis TA, Yang JA, Lohse SE, Alkilany AM, Holland LA, et al. Nanoparticle–protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir. 2013;29(48):14984–96.

    Article  CAS  Google Scholar 

  44. Wang Y, Ni YN. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles. Talanta. 2014;119:320–30.

    Article  CAS  Google Scholar 

  45. Czajkowski R, Grabe GJ, van der Wolf JM. Distribution of Dickeya spp. and Pectobacterium carotovorum subsp carotovorum in naturally infected seed potatoes. Eur J Plant Pathol. 2009;125:263–75.

    Article  Google Scholar 

  46. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–48.

    Article  CAS  Google Scholar 

  47. Moerz ST, Kraegeloh A, Chanana M, Kraus T. Formation mechanism for stable hybrid clusters of proteins and nanoparticles. ACS Nano. 2015;9(7):6696–705.

    Article  CAS  Google Scholar 

  48. Du S, Kendall K, Toloueinia P, Mehrabadi Y, Gupta G, Newton J. Aggregation and adhesion of gold nanoparticles in phosphate buffered saline. J Nanopart Res. 2012;14:758.

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Russian Science Foundation (grant no. 16-16-04108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safenkova, I.V., Zaitsev, I.A., Varitsev, Y.A. et al. Development of a lateral flow immunoassay for rapid diagnosis of potato blackleg caused by Dickeya species. Anal Bioanal Chem 409, 1915–1927 (2017). https://doi.org/10.1007/s00216-016-0140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0140-6

Keywords

Navigation