Analytical and Bioanalytical Chemistry

, Volume 409, Issue 7, pp 1905–1913 | Cite as

Comprehensive two-dimensional gas chromatographic profiling and chemometric interpretation of the volatile profiles of sweat in knit fabrics

  • A. Paulina de la Mata
  • Rachel H. McQueen
  • Seo Lin Nam
  • James J. Harynuk
Research Paper


Human axillary sweat is a poorly explored biofluid within the context of metabolomics when compared to other fluids such as blood and urine. In this paper, we explore the volatile organic compounds emitted from two different types of fabric samples (cotton and polyester) which had been worn repeatedly during exercise by participants. Headspace solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) were employed to profile the (semi)volatile compounds on the fabric. Principal component analysis models were applied to the data to aid in visualizing differences between types of fabrics, wash treatment, and the gender of the subject who had worn the fabric. Statistical tools included with commercial chromatography software (ChromaTOF) and a simple Fisher ratio threshold-based feature selection for model optimization are compared with a custom-written algorithm that uses cluster resolution as an objective function to maximize in a hybrid backward-elimination forward-selection approach for optimizing the chemometric models in an effort to identify some compounds that correlate to differences between fabric types. The custom algorithm is shown to generate better models than the simple Fisher ratio approach.

Graphical Abstract

A route from samples and questions to data and then answers


Metabolomics Human body odor Solid-phase microextraction (SPME) Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC TOFMS) Variable selection Fisher ratio Textiles 



A.P. de la Mata would like to thank CONACyT for its support. The authors also thank Cotton Incorporated, Alberta Innovates Technology Futures, and the Natural Sciences and Engineering Research Council (NSERC) Canada, Genome Canada, and Genome Alberta for financial support related to this study. Leco, The Canada Foundation for Innovation (CFI), and the Government of Alberta are acknowledged for their support in obtaining the GC×GC-TOFMS system.

Compliance with ethical standards

The authors declare that they have no conflicts of interest. Prior to any research being carried out involving human participants, all research protocols were approved by the relevant Human Research Ethics Board at the University of Alberta, including obtaining the informed consent of all participants in the wear trial that generated the fabric samples.

Supplementary material

216_2016_137_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1374 kb)


  1. 1.
    Fredrich E, Barzantny H, Brune I, Tauch A. Daily battle against body odor: towards the activity of the axillary microbiota. Trends Microbiol. 2013;21(6):305–12. doi: 10.1016/j.tim.2013.03.002.CrossRefGoogle Scholar
  2. 2.
    Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol. 1989;20(4):537–63. doi: 10.1016/S0190-9622(89)70063-3.CrossRefGoogle Scholar
  3. 3.
    Luque de Castro MD. Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal. 2014;90:139–47. doi: 10.1016/j.jpba.2013.10.048.CrossRefGoogle Scholar
  4. 4.
    Shove E. Converging conventions of comfort, cleanliness and convenience. J Consum Policy. 2003;26(4):395–418. doi: 10.1023/a:1026362829781.CrossRefGoogle Scholar
  5. 5.
    Wise Water Use [database on the Internet] 2013. Available from: Accessed Jan 2014.
  6. 6.
    Khun F, Natsch A. Body odour of monozygotic human twins: a common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. J R Soc Interface. 2009;6:377–92.CrossRefGoogle Scholar
  7. 7.
    Zeng X-n, Leyden J, Lawley H, Sawano K, Nohara I, Preti G. Analysis of characteristic odors from human male axillae. J Chem Ecol. 1991;17(7):1469–92. doi: 10.1007/bf00983777.CrossRefGoogle Scholar
  8. 8.
    Zeng X-N, Leyden J, Spielman A, Preti G. Analysis of characteristic human female axillary odors: qualitative comparison to males. J Chem Ecol. 1996;22(2):237–57. doi: 10.1007/bf02055096.CrossRefGoogle Scholar
  9. 9.
    Curran AM, Ramirez CF, Schoon AA, Furton KG. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J Chromatogr B. 2007;846(1–2):86–97. doi: 10.1016/j.jchromb.2006.08.039.CrossRefGoogle Scholar
  10. 10.
    Curran A, Rabin S, Prada P, Furton K. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J Chem Ecol. 2005;31(7):1607–19. doi: 10.1007/s10886-005-5801-4.CrossRefGoogle Scholar
  11. 11.
    Prada PA, Curran AM, Furton KG. The evaluation of human hand odor volatiles on various textiles: a comparison between contact and noncontact sampling methods. J Forensic Sci. 2011;56(4):866–81. doi: 10.1111/j.1556-4029.2011.01762.x.CrossRefGoogle Scholar
  12. 12.
    Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X, Preti G. Analyses of volatile organic compounds from human skin. Br J Dermatol. 2008;159(4):780–91.CrossRefGoogle Scholar
  13. 13.
    Munk S, Münch P, Stahnke L, Adler-Nissen J, Schieberle P. Primary odorants of laundry soiled with sweat/sebum: influence of lipase on the odor profile. J Surfactant Deterg. 2000;3(4):505–15. doi: 10.1007/s11743-000-0150-z.CrossRefGoogle Scholar
  14. 14.
    Munk S, Johansen C, Stahnke L, Adler-Nissen J. Microbial survival and odor in laundry. J Surfactant Deterg. 2001;4(4):385–94. doi: 10.1007/s11743-001-0192-2.CrossRefGoogle Scholar
  15. 15.
    Liu C, Furusawa Y, Hayashi K. Development of a fluorescent imaging sensor for the detection of human body sweat odor. Sensors Actuators B Chem. 2013;183:117–23. doi: 10.1016/j.snb.2013.03.111.CrossRefGoogle Scholar
  16. 16.
    Dixon SJ, Xu Y, Brereton RG, Soini HA, Novotny MV, Oberzaucher E, et al. Pattern recognition of gas chromatography mass spectrometry of human volatiles in sweat to distinguish the sex of subjects and determine potential discriminatory marker peaks. Chemom Intell Lab Syst. 2007;87(2):161–72. doi: 10.1016/j.chemolab.2006.12.004.CrossRefGoogle Scholar
  17. 17.
    McQueen RH, Laing RM, Delahunty CM, Brooks HJL, Niven BE. Retention of axillary odour on apparel fabrics. J Text Inst. 2008;99(6):515–23. doi: 10.1080/00405000701659774.CrossRefGoogle Scholar
  18. 18.
    Callewaert C, De Maeseneire E, Kerckhof F-M, Verliefde A, de Wiele TV, Boon N. Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microb. 2014;81(5). doi: 10.1128/AEM.01422-14.
  19. 19.
    Pandey SK, Kim K-H. Human body-odor components and their determination. TrAC, Trends Anal Chem. 2011;30(5):784–96. doi: 10.1016/j.trac.2010.12.005.CrossRefGoogle Scholar
  20. 20.
    Adahchour M, Beens J, Vreuls RJJ, Brinkman UAT. Recent developments in comprehensive two-dimensional gas chromatography (GC × GC): IV. Further applications, conclusions and perspectives. TrAC, Trends Anal Chem. 2006;25(8):821–40. doi: 10.1016/j.trac.2006.03.003.CrossRefGoogle Scholar
  21. 21.
    Cortes HJ, Winniford B, Luong J, Pursch M. Comprehensive two dimensional gas chromatography review. J Sep Sci. 2009;32(5–6):883–904. doi: 10.1002/jssc.200800654.CrossRefGoogle Scholar
  22. 22.
    Gorecki T, Harynuk J, Panic O. The evolution of comprehensive two-dimensional gas chromatography (GC × GC). J Sep Sci. 2004;27(5–6):359–79. doi: 10.1002/jssc.200301650.CrossRefGoogle Scholar
  23. 23.
    Harynuk JJ, De la Mata AP, Sinkov NA. Application of chemometrics to the interpretation of analytical separation data. In: Varmuza DK, editor. Chemometrics in practical applications. InTech; 2012. p. 305–26.Google Scholar
  24. 24.
    Sinkov NA, Harynuk JJ. Cluster resolution: a metric for automated, objective and optimized feature selection in chemometric modeling. Talanta. 2011;83(4):1079–87. doi: 10.1016/j.talanta.2010.10.025.CrossRefGoogle Scholar
  25. 25.
    Sinkov NA, Sandercock PML, Harynuk JJ. Chemometric classification of casework arson samples based on gasoline content. Forensic Sci Int. 2014;235(0):24–31. doi: 10.1016/j.forsciint.2013.11.014.CrossRefGoogle Scholar
  26. 26.
    McQueen RH, Harynuk JJ, Wismer WV, Keelan M, Xu Y, Mata AP. Axillary odour build-up in knit fabrics following multiple use cycles. Int J Cloth Sci Technol. 2014;26(4):274–90. doi: 10.1108/IJCST-05-2013-0064.CrossRefGoogle Scholar
  27. 27.
    Yin T, Yang G, Ma Y, Xu B, Hu M, You M, et al. Developing an activity and absorption-based quality control platform for Chinese traditional medicine: application to Zeng-Sheng-Ping(Antitumor B). J Ethnopharmacol. 2015;172:195–201. doi: 10.1016/j.jep.2015.06.019.CrossRefGoogle Scholar
  28. 28.
    van Den Dool H, Dec. Kratz P. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr A. 1963;11(C):463–71.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Paulina de la Mata
    • 1
  • Rachel H. McQueen
    • 2
  • Seo Lin Nam
    • 1
  • James J. Harynuk
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada
  2. 2.Department of Human EcologyUniversity of AlbertaEdmontonCanada

Personalised recommendations