Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles

Abstract

Phytopathogens are the main disease agents that promote attack of cocoa plantations in all tropical countries. The similarity of the symptoms caused by different phytopathogens makes the reliable identification of the diverse species a challenge. Correct identification is important in the monitoring and management of these pests. Here we show that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis is able to rapidly and reliably differentiate cocoa phytopathogens, namely Moniliophthora perniciosa, Phytophthora palmivora, P. capsici, P. citrophthora, P. heveae, Ceratocystis cacaofunesta, C. paradoxa, and C. fimbriata. MALDI-MS reveals unique peptide/protein and lipid profiles which differentiate these phytopathogens at the level of genus, species, and single strain coming from different hosts or cocoa tissues collected in several plantations/places. This fast methodology based on molecular biomarkers is also shown to be sufficiently reproducible and selective and therefore seems to offer a suitable tool to guide the correct application of sanitary defense approaches for infected cocoa plantations. International trading of cocoa plants and products could also be efficiently monitored by MALDI-MS. It could, for instance, prevent the entry of new phytopathogens into a country, e.g., as in the case of Moniliophthora roreri fungus that is present in all cocoa plantations of countries bordering Brazil, but that has not yet attacked Brazilian plantations.

Secure identification of phytopathogens attacking cocoa plantations has been demonstrated via typical chemical profiles provided by mass spectrometric screening

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Evans HC, Bezerra JL, Barreto RW. Of mushrooms and chocolate trees: aetiology and phylogeny of witches' broom and frosty pod diseases of cacao. Plant Pathol. 2013;62:728–40.

    Article  Google Scholar 

  2. 2.

    Ploetz RC. Cacao diseases: important threats to chocolate production worldwide. Phytopathology. 2007;97:1634–9.

    Article  Google Scholar 

  3. 3.

    Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, et al. Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe? Mol Plant Pathol. 2008;9:577–88.

    Article  Google Scholar 

  4. 4.

    Bailey BA, Melnick RL, Strem MD, Crozier J, Shao J, Sicher R, et al. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. Mol Plant Pathol. 2014;7:711–29.

    Article  Google Scholar 

  5. 5.

    Bahia RC, Aguilar-Vildoso CI, Luz ED, Lopes UV, Machado RC, Corrêa RX. Resistance to black pod disease in a segregating cacao tree population. Trop Plant Pathol. 2015;40:13–8.

    Article  Google Scholar 

  6. 6.

    Ambrosio AB, Nascimento LC, Oliveira BV, Teixeira PJ, Tiburcio RA, Thomazella DP, et al. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics. 2013;14:91.

    CAS  Article  Google Scholar 

  7. 7.

    Deberdt P, Mfegue CV, Tondje PR, Bon MC, Ducamp M, Hurard C, et al. Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biol Control. 2008;44:149–59.

    Article  Google Scholar 

  8. 8.

    Rincones J, Scarpari LM, Carazzolle MF, Mondego JM, Formighieri EF, et al. Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa. Mol Plant Microbe Interact. 2008;21:891–908.

    CAS  Article  Google Scholar 

  9. 9.

    Mondego JM, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, et al. A genome survey of Moniliophthora perniciosa gives new insights into witches' broom disease of cacao. BMC Genomics. 2008;9:548.

    Article  Google Scholar 

  10. 10.

    Teixeira PJ, Thomazella DP, Vidal RO, do Prado PF, Reis O, Baroni RM, et al. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS One. 2012;7:45929.

    Article  Google Scholar 

  11. 11.

    Ristaino JB, Madritch M, Trout CL, Parra G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Appl Environ Microbiol. 1998;64:948–54.

    CAS  Google Scholar 

  12. 12.

    Bowman KD, Albrecht U, Graham JH, Brigh DB. Detection of Phytophthora nicotianae and P. palmivora in citrus roots using PCR-RFLP in comparison with other methods. Eur J Plant Pathol. 2007;119:143–58.

    CAS  Article  Google Scholar 

  13. 13.

    Engelbrecht CJ, Harrington TC, Alfenas AC, Suarez C. Genetic variation in populations of the cacao wilt pathogen, Ceratocystis cacaofunesta. Plant Pathol. 2007;56:923–33.

    CAS  Article  Google Scholar 

  14. 14.

    Harrington TC, Thorpe DJ, Alfenas AC. Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Phytopathology. 2011;101:555–66.

    Article  Google Scholar 

  15. 15.

    De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ. Redefining Ceratocystis and allied genera. Stud Mycol. 2014;79:187–219.

    Article  Google Scholar 

  16. 16.

    Schena L, Nigro F, Ippolito A, Gallitelli D. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol. 2004;110:893–908.

    CAS  Article  Google Scholar 

  17. 17.

    Marinach-Patrice C, Lethuillier A, Marly A, Brossas JY, Gene J, Symoens F, et al. Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect. 2009;15:634–42.

    CAS  Article  Google Scholar 

  18. 18.

    Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI-MS. Mass Spectrom Rev. 2001;20:157–71.

    CAS  Article  Google Scholar 

  19. 19.

    Chalupová J, Raus M, Sedlářová M, Sebela M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv. 2014;32(1):230–41.

    Article  Google Scholar 

  20. 20.

    Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, et al. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One. 2008;3:2843.

    Article  Google Scholar 

  21. 21.

    Stevenson LG, Drake SK, Murray PR. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2008;48:444–7.

    Article  Google Scholar 

  22. 22.

    Senga P, Drancourta M, Gouriet F, Scola BL, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543–51.

    Article  Google Scholar 

  23. 23.

    Van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. 2010;48:900–7.

    Article  Google Scholar 

  24. 24.

    Erhard M, Döhren HV, Jungblut P. Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat Biotechnol. 1997;15:906–9.

    CAS  Article  Google Scholar 

  25. 25.

    Sandonato BB, Santos VG, Luizete MF, Bronzel JL Jr, Eberlin MN, Milagre HM. MALDI imaging mass spectrometry of fresh water cyanobacteria: spatial distribution of toxins and other metabolites. Braz Chem Soc. 2016:1–8.

  26. 26.

    Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to vírus identification. Sci Rep. 2015;4:6803.

    Article  Google Scholar 

  27. 27.

    Cobo F. Application of MALDI-TOF mass spectrometry in clinical virology: a review. Open Virol J. 2013;7:84–90.

    Article  Google Scholar 

  28. 28.

    Calderaro A, Piergianni M, Buttrini M, Montecchini S, Piccolo G, Gorrini C, et al. MALDI-TOF mass spectrometry for the detection and differentiation of Entamoeba histolytica and Entamoeba dispar. PLoS One. 2015;10:0122448.

    Article  Google Scholar 

  29. 29.

    Song C, Mazzola M, Cheng X, Oetjen J, Alexandrov T, Dorrestein P, et al. Molecular and chemical dialogues in bacteria-protozoa interactions. Sci Rep. 2015;5:12837.

    CAS  Article  Google Scholar 

  30. 30.

    Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010;48:3482–6.

    CAS  Article  Google Scholar 

  31. 31.

    Qian J, Cutler JE, Cole RB, Cai Y. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem. 2008;392:439–49.

    CAS  Article  Google Scholar 

  32. 32.

    Kemptner J, Marchetti-Deschmann M, Kubicekb CP, Allmaier G. Mixed volume sample preparation method for intact cell mass spectrometry of Fusarium spores. J Mass Spectrom. 2009;44:1622–4.

    CAS  Article  Google Scholar 

  33. 33.

    Seyfarth F, Ziemer M, Sayer HG, Burmester A, Erhard M, Welker M, et al. The use of ITS DNA sequence analysis and MALDI-TOF mass spectrometry in diagnosing an infection with Fusarium proliferatum. Exp Dermatol. 2008;17:965–71.

    CAS  Article  Google Scholar 

  34. 34.

    Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, Ruggeri A, et al. Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational studying two large microbiology laboratories. J Clin Microbiol. 2012;50:176–9.

    CAS  Article  Google Scholar 

  35. 35.

    Sulc M, Peslova K, Zabka M, Hajduch M, Havlicek V. Biomarkers of Aspergillus spores: strain typing and protein identification. Int J Mass Spectrom. 2009;280:162–8.

    CAS  Article  Google Scholar 

  36. 36.

    Tao J, Zhang G, Jiang Z, Cheng Y, Feng J, Chen Z. Detection of pathogenic Verticillium spp. using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:3647–54.

    CAS  Article  Google Scholar 

  37. 37.

    Schulthess B, Ledermann R, Mouttet F, Zbinden A, Bloemberg GV, Böttger EC, et al. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J Clin Microbiol. 2014;52:2797–803.

    Article  Google Scholar 

  38. 38.

    De Carolis E, Posteraro B, Lass-Flörl C, Vella A, Florio AR, Torelli R, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:475–84.

    Article  Google Scholar 

  39. 39.

    Angelini R, Babudri F, Lobasso S, Corcelli A. MALDI-TOF/MS analysis of archaebacterial lipids in lyophilized membranes dry-mixed with 9-aminoacridine. J Lipid Res. 2010;51(9):2818–25.

    CAS  Article  Google Scholar 

  40. 40.

    Fuchs B, Süß R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49:450–75.

    CAS  Article  Google Scholar 

  41. 41

    Bligh EG, Dyer WJ. Can J Biochem Physiol. 1959;37:911–17.

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technology (CNPq) for fellowships 140743/2013-8 and general financial support 447708/2014-7, the Research Agency of the State of Sao Paulo (FAPESP) for fellowships 11/06191-7 and general financial support 12/07206-0. The authors are especially grateful to Virgínia Oliveira Damaceno, Ana Rosa Rocha Niella, and Elisangela Santos from the Cocoa Research Center of CEPLAC for the preparation of isolated pathogens.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcos Nogueira Eberlin.

Ethics declarations

Conflict of Interest

The authors declare absence of potential conflicts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1348 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, F.N., Tata, A., Belaz, K.R.A. et al. Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles. Anal Bioanal Chem 409, 1765–1777 (2017). https://doi.org/10.1007/s00216-016-0133-5

Download citation

Keywords

  • Theobroma cacao
  • Phytopathogen
  • Moniliophthora perniciosa
  • Ceratocystis spp
  • Phytophthora spp
  • Matrix-assisted laser desorption ionization–time-of-flight