Skip to main content

Advertisement

Log in

Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new approach to selectively enhance the ultraviolet (UV) detection sensitivity of titania (TiO2), albeit in the presence of silica (SiO2), alumina (Al2O3), and zinc oxide (ZnO), nanoparticles in capillary electrophoresis (CE) analysis was developed. Interactions of Triton X-100 (TX-100), polyethylene glycol (PEG), and deoxyribonucleic acid (DNA) with TiO2 nanoparticles produced larger CE-UV peaks at various enhancement factors. Single-stranded DNA (ssDNA) was a more effective adsorbate than double-stranded DNA (dsDNA) due to its flexible molecular structure that participated in a stronger interaction with TiO2 nanoparticles via its sugar-phosphate backbone. Disaggregation of TiO2 nanoparticles upon DNA binding due to electrosteric stabilization was validated using dynamic light scattering. PEG coating of TiO2-DNA nanoparticles further enhanced the UV detection sensitivity in CE analysis by providing extra electrosteric stabilization. This analytical technique, which involves binding of TiO2 nanoparticles with DNA followed by coating with PEG, has allowed us to achieve progressively an enhancement factor up to 13.0 ± 3.0 - fold in analytical sensitivity for the accurate determination of disaggregated TiO2 nanoparticles.

Selective enhancement of UV detection sensitivity for TiO2 nanoparticles via electrosteric stabilization using ssDNA and PEG

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. United States Environmental Protection Agency. Technical fact sheet—nanomaterials, 2014, EPA,505-F-14-002. https://www.epa.gov/sites/production/files/201403/documents/ffrrofactsheet_emergingcontaminant_nanomaterials_jan2014_final.pdf. Accessed March 2016.

  2. Yolanda P. Challenges in the determination of engineered nanomaterials in foods. Trends Anal Chem. 2016. doi:10.1016/j.trac.2016.06.004.

    Google Scholar 

  3. Brennner SA, Neu-Baker NM, Eastlake AC, Beaucham CC, Geraci CL. NIOSH field studies team assessment: worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility. J Occup Environ Hyg. 2016;12:1–31.

    Google Scholar 

  4. Eastlake AC, Beaucham C, Martinez KF, et al. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J Occup Environ Hyg. 2016. doi:10.1080/15459624.2016.1167278.

    Google Scholar 

  5. Ding Y, Kuhlbusch TAG, Tongeren MV, et al. Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes. J Hazard Mater. 2016. doi:10.1016/j.jhazmat.2016.04.075.

    Google Scholar 

  6. Filon FL, Bello D, Cherrie JW, Sleeuwenhoek A, Spaan S, Brouwer DH. Occupational dermal exposure to nanoparticles and nano-enabled products: part I—factors affecting skin absorption. Int J Hyg Environ Health. 2016;219:536–44.

    Article  Google Scholar 

  7. Sukwong P, Somkid K, Kongseng S, Pissuwan D, Yoovathaworn K. Respiratory tract toxicity of titanium dioxide nanoparticles and multi-walled carbon nanotubes on mice after intranasal exposure. IET Micro Nano Lett. 2016;11:183–7.

    Article  Google Scholar 

  8. Rehberg M, Nekolla K, Sellner S, et al. Intercellular transport of nanomaterials is mediated by membrane nanotubes in vivo. Small. 2016;12:1882–90.

    Article  CAS  Google Scholar 

  9. Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R. Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res. 2016;23:2821–30.

    Article  CAS  Google Scholar 

  10. Tiede K, Hanssen SF, Westerhoff P, et al. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology. 2016;10:102–10.

    CAS  Google Scholar 

  11. Wang B, He X, Zhang Z, Zhao Y, Feng W. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res. 2013;46:761–9.

    Article  CAS  Google Scholar 

  12. Miranda RR, Silveira ALRD, de Jesus IP, et al. Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environ Sci Pollut Res. 2016;23:5179–88.

    Article  CAS  Google Scholar 

  13. Andersen CP, King G, Plocher M, et al. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem. 2016. doi:10.1002/etc.3374.

    Google Scholar 

  14. Wiechers JW, Musee N. Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges. J Biomed Nanotechnol. 2010;6:408–31.

    Article  CAS  Google Scholar 

  15. Weir A, Westerhoff P, Fabricius L, Hristovski K, Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50.

    Article  CAS  Google Scholar 

  16. Spinazzè A, Cattaneo A, Limonta M, Bollati V, Bertazzi PA, Cavallo DM. Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production. J Nanopart Res. 2016;18:151–63.

    Article  Google Scholar 

  17. Khan MJ, Maskat MY. Interaction of titanium dioxide nanoparticles with human serum albumin: a spectroscopic approach. Int J Pharm Pharm Sci. 2014;6:43–6.

    Google Scholar 

  18. Yu R, Wu J, Liu M, et al. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere. 2016;153:187–97.

    Article  CAS  Google Scholar 

  19. Bondarenko OM, Heinlaan M, Sihtmäe M, et al. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology. 2016;28:1–14.

    Google Scholar 

  20. Patel S, Patel P, Undre SB, Pandy SR, Singh M, Bakshi S. DNA binding and dispersion activities of titanium dioxide nanoparticles with UV/vis spectrophotometry, fluorescence spectroscopy and physicochemical analysis at physiological temperature. J Mol Liq. 2016;213:304–11.

    Article  CAS  Google Scholar 

  21. Zhu RR, Wang SL, Zhang R, Sun XY, Yao SD. A novel toxicological evaluation of TiO2 nanoparticles on DNA structure. Chin J Chem. 2007;25:958–61.

    Article  CAS  Google Scholar 

  22. Li S, Zhu H, Zhu R, Sun X, Yao S, Wang S. Impact and mechanism of TiO2 nanoparticles on DNA synthesis in vitro. Sci China Ser B Chem. 2008;51:367–72.

    Article  CAS  Google Scholar 

  23. Gurra JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73.

    Article  Google Scholar 

  24. Armand L, Tarantini A, Beal D, et al. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology. 2016;10:913–23.

    Article  CAS  Google Scholar 

  25. Rao A, Schoenenberger M, Gnecco E, et al. Characterization of nanoparticles using atomic force microscopy. J Phys Conf Ser. 2007;61:971–6.

    Article  CAS  Google Scholar 

  26. Yan N, Zhu Z, He D, Jin L, Zheng H, Hu S. Simultaneous determination of size and quantification of gold nanoparticles by direct coupling thin layer chromatography with catalyzed luminol chemiluminescence. Sci Rep. 2016. doi:10.1038/srep24577.

    Google Scholar 

  27. Corredor C, Borysiak MD, Wolfer J, Westerhoff P, Posner JD. Colorimetric detection of catalytic reactivity of nanoparticles in complex matrices. Environ Sci Technol. 2015;49:3611–8.

    Article  CAS  Google Scholar 

  28. Plata DL, Reddy CM, Gschwend PM. Thermogravimetry–mass spectrometry for carbon nanotube detection in complex mixtures. Environ Sci Technol. 2012;46:12254–61.

    Article  CAS  Google Scholar 

  29. Fabricius AL, Duester L, Meermann B, Ternes TA. ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal Bioanal Chem. 2014;406:467–79.

    Article  CAS  Google Scholar 

  30. Voracova I, Kleparnik K, Liskova M, Foret F. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis. 2015;36:867–74.

    Article  CAS  Google Scholar 

  31. Liu L, Feng F, Hu Q, et al. Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles. Electrophoresis. 2015;36:2110–9.

    Article  CAS  Google Scholar 

  32. Li YQ, Guan LY, Zhang HL, et al. Distance dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection. Anal Chem. 2011;83:4103–9.

    Article  CAS  Google Scholar 

  33. Lin KH, Chu TC, Liu FK. On-line enhancement and separation of nanoparticles using capillary electrophoresis. J Chromatogr A. 2007;1161:314–21.

    Article  CAS  Google Scholar 

  34. Li L, Yu H, Liu D, You T. A novel dark-field microscopy technique coupled with capillary electrophoresis for visual analysis of single nanoparticles. Analyst. 2013;138:3705–10.

    Article  CAS  Google Scholar 

  35. Bouri M, Salghi R, Algarra M, Zougagh M, Ríos A. A novel approach to size separation of gold nanoparticles by capillary electrophoresis-evaporative light scattering detection. RSC Adv. 2015;5:16672–7.

    Article  CAS  Google Scholar 

  36. Franze B, Engelhard C. Fast separation, characterization, and separation of gold and silver nanoparticles and their ionic counterparts with micellar electrokinetic chromatography coupled to ICP-MS. Anal Chem. 2014;86:5713–20.

    Article  CAS  Google Scholar 

  37. Spink CH, Chaires JB. Selective stabilization of triplex DNA by poly(ethylene glycols). J Am Chem Soc. 1995;117:12887–8.

    Article  CAS  Google Scholar 

  38. Nakano S, Karimata H, Ohmichi T, Kawakami J, Sugimoto N. The effect of molecular crowding with nucleotide length and cosolute structure on DNA duplex stability. J Am Chem Soc. 2004;126:14330–1.

    Article  CAS  Google Scholar 

  39. Feng B, Frykholm K, Nordena B, Westerlund F. DNA strand exchange catalyzed by molecular crowding in PEG solutions. Chem Commun. 2010;46:8231–3.

    Article  CAS  Google Scholar 

  40. Biplab KC, Paudel SN, Rayamajhi S, et al. Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of Triton X-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell. Chem Cent J. 2016;10:1–10.

    Article  Google Scholar 

  41. Lee SJ, Cho IH, Kim H, Hong SJ. Microstructure characterization of TiO2 photoelectrodes for dye-sensitized solar cell using statistical design of experiments. Trans Electr Electron Mater. 2009;10:177–81.

    Article  Google Scholar 

  42. Sun P, Zhang K, Fang J, Lin D, Wang M, Han J. Transport of TiO2 nanoparticles in soil in the presence of surfactants. Sci Total Environ. 2015;15:527–8.

    Google Scholar 

  43. Dhawan A, Sharma V. Toxicity assessment of nanomaterials: methods and challenge. Anal Bioanal Chem. 2010;398:589–605.

    Article  CAS  Google Scholar 

  44. Murdock RC, Stolle LB, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in VitroExposure using dynamic light scattering technique. Toxicol Sci. 2008;101:239–53.

    Article  CAS  Google Scholar 

  45. Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticles toxicity assessments. Toxicol Sci. 2007;95:300–12.

    Article  CAS  Google Scholar 

  46. Romero-Cano MS, Martın-Rodrıguez A, de las Nieves FJ. Electrosteric stabilization of polymer colloids with different functionality. Langmuir. 2001;17:3505–11.

    Article  CAS  Google Scholar 

  47. Kunitsyn VG, Kuznetsov PA, Demchenko EN, Gimautdinova OI. Structural study of methylated and non-methylated duplexes by IR Fourier spectroscopy. Open J Phys Chem. 2015;5:87–92.

    Article  CAS  Google Scholar 

  48. Aksoy C, Severcan F. Role of vibrational spectroscopy in stem cell research. Spectrosc Int J. 2012;27:167–84.

    Article  CAS  Google Scholar 

  49. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 2011;6:715–28.

    Article  CAS  Google Scholar 

  50. Du Y, Ren W, Li Y, et al. The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. J Mater Chem B. 2015;3:1518–28.

    Article  CAS  Google Scholar 

  51. Cheng TL, Chuang KH, Chen BM, Roffler SR. Analytical measurement of PEGylated molecules. Bioconjugate Chem. 2012;23:881–99.

    Article  CAS  Google Scholar 

  52. Fritz G, Schadler V, Willenbacher N, Wagner NJ. Electrosteric stabilization of colloidal dispersions. Langmuir. 2002;18:6381–90.

    Article  CAS  Google Scholar 

  53. Pettersson A, Marino G, Pursiheimo A, Rosenholm JB. Electrosteric stabilization of Al2O3, ZrO2 and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte. J Colloid Interface Sci. 2000;228:73–81.

    Article  CAS  Google Scholar 

  54. Hang J, Shi L, Feng X, Xiao L. Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles. Powder Technol. 2009;192:166–70.

    Article  CAS  Google Scholar 

  55. Pacia M, Warszyński P, Macyk W. UV and visible light active aqueous titanium dioxide colloids stabilized by surfactants. Dalton Trans. 2014;43:12480–5.

    Article  CAS  Google Scholar 

  56. Zhang X, Wang F, Liu B, Kelly EY, Servos MR, Liu J. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir. 2014;30:839–45.

    Article  CAS  Google Scholar 

  57. Cleaves HJ, Crapster-Pregont E, Jonsson CM, Jonsson CL, Sverjensky DA, Hazen RA. The adsorption of short single-stranded DNA oligomers to mineral surfaces. Chemosphere. 2011;83:1560–7.

    Article  Google Scholar 

  58. Shi B, Shin YK, Hassanali AA, Singer SJ. DNA binding to the silica surface. J Phys Chem B. 2015;119:11030–40.

    Article  CAS  Google Scholar 

  59. Dharanivasan G, Jesse DMI, Chandirasekar S, Rajendiran N, Kathiravan K. Label free fluorometric characterization of DNA interaction with cholate capped gold nanoparticles using ethidium bromide as a fluorescent probe. J Fluoresc. 2014;24:1397–406.

    Article  CAS  Google Scholar 

  60. Laborda F, Bolea E, Lamana JJ. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. TrEAC. 2016;9:15–23.

    CAS  Google Scholar 

  61. Hofer R, Textor M, Spencer ND. Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir. 2001;17:4014–20.

    Article  CAS  Google Scholar 

  62. Zwahlen M, Tosatti S, Textor M, Hahner G. Orientation in methyl- and hydroxyl-terminated self-assembled alkanephosphate monolayers on titanium oxide surfaces investigated with soft x-ray absorption. Langmuir. 2002;18:3957–62.

    Article  CAS  Google Scholar 

  63. Rapuano R, Carmona-Ribeiro AM. Physical adsorption of bilayer membranes on silica. J Colloid Interface Sci. 1997;193:104–11.

    Article  CAS  Google Scholar 

  64. Faure B, Salazar-Alvarez G, Ahniyaz A, et al. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater. 2013;14:1–23.

    Article  Google Scholar 

  65. Barrère F, Lebugle A, Blitterswijk CA, Groot K, Layrolle P. Calcium phosphate interactions with titanium oxide and alumina substrates: an XPS study. J Mater Sci Mater Med. 2003;14:419–25.

    Article  Google Scholar 

  66. Chung YA, Chen YH, Chang PL. Strategies of fluorescence staining for trace total ribonucleic acid analysis by capillary electrophoresis with argon ion laser-induced fluorescence. Electrophoresis. 2015;36:1781–4.

    Article  CAS  Google Scholar 

  67. Mori Y. Size-selective separation techniques for nanoparticles in liquid. KONA Powder Part J. 2015;32:102–14.

    Article  Google Scholar 

  68. Leopold K, Philippe A, Wörle K, Schaumann GE. Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. Trends Anal Chem. 2016. doi:10.1016/j.trac.2016.03.026.

    Google Scholar 

Download references

Acknowledgments

Financial support from NSERC Canada is gratefully acknowledged. S. Alsudir thanks the Saudi Ministry of Higher Education for her scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. C. Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsudir, S., Lai, E.P.C. Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis. Anal Bioanal Chem 409, 1857–1868 (2017). https://doi.org/10.1007/s00216-016-0130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0130-8

Keywords