Skip to main content
Log in

A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To specifically and sensitively identify bisphenol A (BPA) with a simple and rapid method is very important for food safety. Using an anti-BPA aptamer and Mo2C nanotubes, we developed a label-free and low-background signal biosensor for BPA detection. The anti-BPA aptamer drastically increased the fluorescence signal of N-methylmesoporphyrin IX under an assistance of Help-DNA. Additionally, BPA can interact with the anti-BPA aptamer and switch its conformation to prevent the formation of a G-quadruplex, resulting in fluorescence quenching. Simultaneously, Mo2C nanotubes can reduce the background signals due to the adsorption of Help-DNA on their surface. This method shows a linear range of 2–20 nM with a detection limit of 2 nM for detecting BPA. This label-free BPA aptasensor with low background signal is inexpensive, easy to use, and can be applied to determine BPA in real water samples.

A low-background and label-free biosensor was designed based on Mo2C nanotubes and aptamer for BPA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30:75–95.

    Article  CAS  Google Scholar 

  2. Cui H, Wu J, Eda S, Chen J, Chen W, Zheng L. Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array. Microchim Acta. 2015;182:2361–7.

    Article  CAS  Google Scholar 

  3. Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, et al. Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta. 2013;180:109–15.

    Article  CAS  Google Scholar 

  4. Lee JS, Kim SG, Jun J, Shin DH, Jang J. Aptamer-functionalized multidimensional conducting-polymer nanoparticles for an ultrasensitive and selective field-effect-transistor endocrine-disruptor sensors. Adv Funct Mater. 2014;24:6145–53.

    Article  CAS  Google Scholar 

  5. Rochester JR. Bisphenol A, and human health: a review of the literature. Reprod Toxicol. 2013;42:132–55.

    Article  CAS  Google Scholar 

  6. Chung E, Jeon J, Yu J, Lee C, Choo J. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Biosens Bioelectron. 2015;64:560–5.

    Article  CAS  Google Scholar 

  7. Xu J, Li Y, Bie J, Jiang W, Guo J, Luo Y, et al. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta. 2015;182:2131–8.

    Article  CAS  Google Scholar 

  8. Hunt PA, Lawson C, Gieske M, Murdoch B, Smith H, Marre A, et al. Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci U S A. 2012;109:17525–30.

    Article  CAS  Google Scholar 

  9. Zhou L, Wang J, Li D, Li Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014;162:34–40.

    Article  CAS  Google Scholar 

  10. Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, 17 beta-estradiol, and 17 alpha-ethynyl estradiol on powdered activated carbon. Water Res. 2003;37:3530–7.

    Article  CAS  Google Scholar 

  11. Zafra-Gómez A, Ballesteros O, Navalón A, Vílchez JL. Determination of some endocrine disrupter chemicals in urban wastewater samples using liquid chromatography-mass spectrometry. Microchem J. 2008;88:87–94.

    Article  Google Scholar 

  12. Kawaguchi M, Inoue K, Yoshimura M, Ito R, Sakui N, Okanouchi N, et al. Determination of bisphenol A in river water and body fluid samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography–mass spectrometry. J Chromatogr B. 2004;805:41–8.

    Article  CAS  Google Scholar 

  13. Zhao M-P, Li Y-Z, Guo Z-Q, Zhang X-X, Chang W-B. A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta. 2002;57:1205–10.

    CAS  Google Scholar 

  14. Watabe Y, Kondo T, Morita M, Tanaka N, Haginaka J, Hosoya K. Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. J Chromatogr A. 2004;1032:45–9.

    Article  CAS  Google Scholar 

  15. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Cienc Saude Coletiva. 2012;17:407–34.

    Article  Google Scholar 

  16. Chen J, Duncan B, Wang Z, Wang LS, Rotello VM, Nugen SR. Bacteriophage-based nanoprobes for rapid bacteria separation. Nanoscale. 2015;7:16230–6.

    Article  CAS  Google Scholar 

  17. Chen J, Li Y, Huang K, Wang P, He L, Carter KR, et al. Nanoimprinted patterned pillar substrates for surface-enhanced Raman scattering applications. ACS Appl Mater Interfaces. 2015;7:22106–13.

    Article  CAS  Google Scholar 

  18. Zhang Y, Cao T, Huang X, Liu M, Shi H, Zhao G. A visible-light driven photoelectrochemical aptasensor for endocrine disrupting chemicals bisphenol A with high sensitivity and specificity. Electroanalysis. 2013;25:1787–95.

    Article  Google Scholar 

  19. Yu P, Liu Y, Zhang X, Zhou J, Xiong E, Li X, et al. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens Bioelectron. 2016;79:22–8.

    Article  CAS  Google Scholar 

  20. Long F, Zhu A, Shi H, Wang H. Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules. Anal Chem. 2014;86:2862–6.

    Article  CAS  Google Scholar 

  21. Duan N, Zhang H, Nie Y, Wu S, Miao T, Chen J, et al. Fluorescence resonance energy transfer-based aptamer biosensors for bisphenol A using lanthanide-doped KGdF4 nanoparticles. Anal Methods. 2015;7:5186–92.

    Article  CAS  Google Scholar 

  22. Wang K, Fan D, Liu Y, Wang E. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron. 2015;73:1–6.

    Article  CAS  Google Scholar 

  23. Zhang D, Yang J, Ye J, Xu L, Xu H, Zhan S, et al. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem. 2016;499:51–6.

    Article  CAS  Google Scholar 

  24. Zhang Y, Li B, Yan C, Fu L. One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. Biosens Bioelectron. 2011;26:3505–10.

    Article  CAS  Google Scholar 

  25. Deng W, Shen L, Wang X, Yang C, Yu J, Yan M, et al. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing. Biosens Bioelectron. 2016;82:132–9.

    Article  CAS  Google Scholar 

  26. Wang K, Ren J, Fan D, Liu Y, Wang E. Integration of graphene oxide and DNA as a universal platform for multiple arithmetic logic units. Chem Commun. 2014;50:14390–3.

    Article  CAS  Google Scholar 

  27. Zhu Y, Cai Y, Xu L, Zheng L, Wang L, Qi B, et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl Mater Interfaces. 2015;7:7492–6.

    Article  CAS  Google Scholar 

  28. Liu JM, Yan XP. Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired molecular conformational switch and fluorescent gold nanoclusters. Biosens Bioelectron. 2012;36:135–41.

    Article  CAS  Google Scholar 

  29. Kuang H, Yin H, Liu L, Xu L, Ma W, Xu C. Asymmetric plasmonic aptasensor for sensitive detection of bisphenol A. ACS Appl Mater Interfaces. 2014;6:364–9.

    Article  CAS  Google Scholar 

  30. Chen WF, Wang CH, Sasaki K, Marinkovic N, Xu W, Muckerman JT, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci. 2013;6:943–51.

    Article  CAS  Google Scholar 

  31. Ma FX, Wu HB, Xia BY, Xu CY, Lou XW. Hierarchical beta-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew Chem Int Ed. 2015;54:15395–9.

    Article  CAS  Google Scholar 

  32. Xiao P, Ge X, Wang H, Liu Z, Fisher A, Wang X. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv Funct Mater. 2015;25:1520–6.

    Article  CAS  Google Scholar 

  33. Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed. 2012;51:12703–6.

    Article  CAS  Google Scholar 

  34. Xing Z, Wang L, Sun X, He Y, Asiri AM. Nanoporous molybdenum carbide nanowires: a novel sensing platform for DNA detection. J Mater Chem B. 2015;3:7173–6.

    Article  CAS  Google Scholar 

  35. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A. 2002;99:11593–8.

    Article  CAS  Google Scholar 

  36. Oh SS, Plakos K, Lou XH, Xiao Y, Soh HT. In vitro selection of structure-switching. Self-reporting aptamers. Proc Natl Acad Sci U S A. 2010;107:14053–8.

    Article  CAS  Google Scholar 

  37. Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, et al. Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides. 2011;21:85–91.

    Article  CAS  Google Scholar 

  38. Marks HL, Pishko MV, Jackson GW, Cote GL. Rational design of a bisphenol A aptamer selective surface-enhanced Raman scattering nanoprobe. Anal Chem. 2014;86:11614–9.

    Article  CAS  Google Scholar 

  39. Yildirim N, Long F, He M, Shi HC, Gu AZ. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ Sci Process Impacts. 2014;16:1379–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (51572044, 21475018), the Program of New Century Excellent Talents in University (NCET-13-0114), and the Fundamental Research Funds for the Central Universities (N140506001, N140505005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Liang Yu or Rong-Huan He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

This work does not contain any studied with human participants or animals.

Additional information

Meng-Qi He and Kun Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, MQ., Wang, K., Wang, J. et al. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal Bioanal Chem 409, 1797–1803 (2017). https://doi.org/10.1007/s00216-016-0123-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0123-7

Keywords

Navigation