Skip to main content
Log in

Liquid chromatography–atmospheric pressure laser ionization–mass spectrometry (LC-APLI-MS) analysis of polycyclic aromatic hydrocarbons with 6–8 rings in the environment

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method has been developed for the sensitive and rapid analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples using liquid chromatography time-of-flight mass spectrometry as well as the selective atmospheric pressure laser ionization (APLI) process (LC-APLI-MS). Upon analyzing 34 PAHs, the limits of detection of this method were found to range from 0.008 to 1.824 pg (0.024 pg for benzo[a]pyrene). The method therefore provides 30-fold to 5,400-fold increased sensitivity compared with the established GC-MS technique. This LC-APLI-MS method was optimized for higher molecular weight PAHs (C24–C30 PAHs with 6–8 rings), which are difficult to detect or cannot be detected by GC-MS. Using the LC-APLI-MS method, various 6- to 8-ring PAHs were detected in environmental samples for the first time. After developing the method, it was successfully validated in ruggedness tests. The concentrations determined by the LC-APLI-MS method were in good accord with the certified concentrations in three certified reference materials (contaminated soils and sediments). Upon applying the method to environmental samples, it was found that (1) the presence of dibenzo[a,i]pyrene and dibenzo[a,h]pyrene in urban soil samples could only be detected using LC-APLI-MS (i.e., not GC-MS) due to its high sensitivity, (2) a bituminous coal sample yielded 211 tentative peaks from aromatic compounds in the C24–C30 range, and (3) eleven of those compounds occurred in different environmental samples in similar patterns. Hence, 6- to 8-ring PAHs occur in solid environmental samples in which other 6-ring PAHs such as indeno[1,2,3-cd]pyrene or benzo[ghi]perylene may also be present. Some of these numerous higher molecular weight PAH compounds could have very high carcinogenic potential, which will need to be elucidated to ensure the reliability of PAH risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. 2008;42:2895–921. doi:10.1016/j.atmosenv.2007.12.010.

    Article  CAS  Google Scholar 

  2. Sakai R, Siegmann HC, Sato H, Voorhees AS. Particulate matter and particle-attached polycyclic aromatic hydrocarbons in the indoor and outdoor air of Tokyo measured with personal monitors. Environ Res. 2002;89:66–71. doi:10.1006/enrs.2002.4355.

    Article  CAS  Google Scholar 

  3. Godoi AFL, Ravindra K, Godoi RHM, Andrade SJ, Santiago-Silva M, Van Vaeck L, et al. Fast chromatographic determination of polycyclic aromatic hydrocarbons in aerosol samples from sugar cane burning. J Chromatogr A. 2004;1027:49–53. doi:10.1016/j.chroma.2003.10.048.

    Article  CAS  Google Scholar 

  4. Achten C, Hofmann T. Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Sci Total Environ. 2009;407:2461–73. doi:10.1016/j.scitotenv.2008.12.008.

  5. Lima ALC, Farrington JW, Reddy CM. Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensic. 2005;6:109–31. doi:10.1080/15275920590952739.

    Article  CAS  Google Scholar 

  6. Yang Y, Ligouis B, Pies C, Achten C, Hofmann T. Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. Chemosphere. 2008;71:2158–67. doi:10.1016/j.chemosphere.2008.01.010.

    Article  CAS  Google Scholar 

  7. Baumard P, Budzinski H, Garrigues P, Dizer H, Hansen P. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Mar Environ Res. 1999;47:17–47. doi:10.1016/S0141-1136(98)00105-6.

  8. Becker L, Glavin DP, Bada JL. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice. Geochim Cosmochim Acta. 1997;61:475–81. doi:10.1016/S0016-7037(96)00400-0.

    Article  CAS  Google Scholar 

  9. Bojes HK, Pope PG. Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul Toxicol Pharmacol. 2007;47:288–95. doi:10.1016/j.yrtph.2006.11.007.

    Article  CAS  Google Scholar 

  10. Sadiktsis I, Bergvall C, Johansson C, Westerholm R. Automobile tires—a potential source of highly carcinogenic dibenzopyrenes to the environment. Environ Sci Technol. 2012;46:3326–34. doi:10.1021/es204257d.

  11. Garrigues P, Achten C, Andersson J. Polycyclic aromatic compounds. 35th ed. Philadelphia: Taylor & Francis; 2015.

    Google Scholar 

  12. Andersson J, Achten C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl Aromat Compd. 2015;35:330–54. doi:10.1080/10406638.2014.991042.

    Article  CAS  Google Scholar 

  13. Stader C, Beer FT, Achten C. Environmental PAH analysis by gas chromatography–atmospheric pressure laser ionization-time-of-flight-mass spectrometry (GC-APLI-MS). Anal Bioanal Chem. 2013;405:7041–52. doi:10.1007/s00216-013-7183-8.

  14. Bergvall C, Westerholm R. Determination of 252–302 Da and tentative identification of 316–376 Da polycyclic aromatic hydrocarbons in standard reference materials 1649a urban dust and 1650b and 2975 diesel particulate matter by accelerated solvent extraction–HPLC-GC-MS. Anal Bioanal Chem. 2008;391:2235–48. doi:10.1007/s00216-008-2182-x.

  15. Ona-Ruales JO, Sharma AK, Wise SA. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. Anal Bioanal Chem. 2015;407:9165–76. doi:10.1007/s00216-015-9084-5.

  16. Thurman EM, Ferrer I, Barceló D. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides. Anal Chem. 2001;73:5441–9.

    Article  CAS  Google Scholar 

  17. Anacleto J, Ramaley L, Benoit F, Boyd R, Quilliam M. Comparison of liquid chromatography mass spectrometry interfaces for the analysis of polycyclic aromatic compounds. Anal Chem. 1995;67:4145–54.

    Article  CAS  Google Scholar 

  18. Pérez S, Barceló D. Determination of polycyclic aromatic hydrocarbons in sewage reference sludge by liquid chromatography–atmospheric-pressure chemical-ionization mass spectrometry. Chromatographia. 2001;53:475–80. doi:10.1007/BF02491606.

  19. Robb D, Covey T, Bruins A. Atmospheric pressure photoionization: an ionization method for liquid chromatography–mass spectrometry. Anal Chem. 2000;72:3653–9.

  20. Robb DB, Blades MW. State-of-the-art in atmospheric pressure photoionization for LC/MS. Anal Chim Acta. 2008;627:34–49. doi:10.1016/j.aca.2008.05.077.

    Article  CAS  Google Scholar 

  21. Cai S-S, Syage JA, Hanold KA, Balogh MP. Ultra performance liquid chromatography-atmospheric pressure photoionization–tandem mass spectrometry for high-sensitivity and high-throughput analysis of U.S. Environmental Protection Agency 16 priority pollutants polynuclear aromatic hydrocarbons. Anal Chem. 2009;81:2123–8. doi:10.1021/ac802275e.

  22. Constapel M, Schellenträger M, Schmitz OJ, Gäb S, Brockmann KJ, Giese R, et al. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:326–36. doi:10.1002/rcm.1789.

    Article  CAS  Google Scholar 

  23. Boesl U. Laser mass spectrometry for environmental and industrial chemical trace analysis. J Mass Spectrom. 2000;35:289–304.

    Article  CAS  Google Scholar 

  24. Lababidi S, Panda SK, Andersson JT, Schrader W. Direct coupling of normal-phase high-performance liquid chromatography to atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry for the characterization of crude oil. Anal Chem. 2013;85:9478–85. doi:10.1021/ac400670s.

  25. Meyer W, Seiler T-B, Reininghaus M, Schwarzbauer J, Püttmann W, Hollert H, et al. Limited waterborne acute toxicity of native polycyclic aromatic compounds from coals of different types compared to their total hazard potential. Environ Sci Technol. 2013;47:11766–75. doi:10.1021/es401609n.

    Article  CAS  Google Scholar 

  26. Richter BE, Jones BA, Ezzell JL, Porter NL. Accelerated solvent extraction: a technique for sample preparation. Anal Chem. 1996;68:1033–1039.

  27. Cho YJ, Na J-G, Nho N-S, Kim SH, Kim S. Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization. Energy Fuels. 2012;26:2558–65. doi:10.1021/ef201312m.

  28. Herndon W. On enumeration and classification of condensed polycyclic benzenoid aromatic hydrocarbons. J Am Chem Soc. 1990;112:4546–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Thorsten Benter and his working group (University of Wuppertal, Institute of Physical and Theoretical Chemistry), who loaned us an excimer laser when the laser belonging to our working group underwent maintenance. The authors also thank Dr. Michael Denneborg (ahu AG Wasser Boden Geomatik, Aachen) for the urban soil samples, and Prof. Dr. Jan Schwarzbauer (RWTH Aachen University, Laboratory for Organic-Geochemical Analysis of the Institute of Geology and Geochemistry of Petroleum and Coal) for the bituminous coal sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Achten.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiäner, J.B., Achten, C. Liquid chromatography–atmospheric pressure laser ionization–mass spectrometry (LC-APLI-MS) analysis of polycyclic aromatic hydrocarbons with 6–8 rings in the environment. Anal Bioanal Chem 409, 1737–1747 (2017). https://doi.org/10.1007/s00216-016-0121-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0121-9

Keywords