Skip to main content

Advertisement

Log in

Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: membrane damage and genomic DNA binding

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2017

Abstract

Thymol (2-isopropyl-5-methylphenol) is a natural ingredient used as flavor or preservative agent in food products. The antibacterial mechanism of thymol against Gram-positive, Staphylococcus aureus was investigated in this work. A total of 15 membrane fatty acids were identified in S. aureus cells by gas chromatography–mass spectrometry. Exposure to thymol at low concentrations induced obvious alterations in membrane fatty acid composition, such as decreasing the proportion of branched 12-methyltetradecanoic acid and 14-methylhexadecanoic acid (from 22.4 and 17.3% to 7.9 and 10.3%, respectively). Membrane permeability assay and morphological image showed that thymol at higher concentrations disrupted S. aureus cell membrane integrity, which may decrease cell viability. Moreover, the interaction of thymol with genomic DNA was also investigated using multi-spectroscopic techniques, docking and atomic force microscopy. The results indicated that thymol bound to the minor groove of DNA with binding constant (K a) value of (1.22 ± 0.14) × 104 M−1, and this binding interaction induced a mild destabilization in the DNA secondary structure, and made DNA molecules to be aggregated.

Thymol exerts its antibacterial effect throught destruction of bacterial cell membrane and binding directly to genomic DNA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Diao WR, Hu QP, Zhang H, Xu JG. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 2014;35:109–16.

    Article  CAS  Google Scholar 

  2. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol. 2008;47:174–9.

    Article  CAS  Google Scholar 

  3. Gustafsson TN, Osman H, Werngren J, Hoffner S, Engman L, Holmgren A. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj. 1860;2016:1265–71.

    Google Scholar 

  4. Almadiy AA, Nenaah GE, Al Assiuty BA, Moussa EA, Mira NM. Chemical composition and antibacterial activity of essential oils and major fractions of four Achillea species and their nanoemulsions against foodborne bacteria. LWT- Food Sci Technol. 2016;69:529–37.

    Article  CAS  Google Scholar 

  5. Tian J, Huang B, Luo X, Zeng H, Ban X, He J, et al. The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chem. 2012;130(3):520–7.

    Article  CAS  Google Scholar 

  6. Yang Y, Yue Y, Runwei Y, Guolin Z. Cytotoxic, apoptotic and antioxidant activity of the essential oil of Amomum tsao-ko. Bioresour Technol. 2010;101:4205–11.

    Article  CAS  Google Scholar 

  7. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, et al. Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem. 1998;46:3590–5.

    Article  CAS  Google Scholar 

  8. Miladinović DL, Ilić BS, Mihajilov-Krstev TM, Nikolić ND, Miladinović LC, Cvetković OG. Investigation of the chemical composition–antibacterial activity relationship of essential oils by chemometric methods. Anal Bioanal Chem. 2012;403:1007–18.

    Article  Google Scholar 

  9. Becerril R, Gómez-Lus R, Goni P, López P, Nerín C. Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Anal Bioanal Chem. 2007;388:1003–11.

    Article  CAS  Google Scholar 

  10. Wang LH, Wang MS, Zeng XA, Gong DM, Huang YB. An in vitro investigation of the inhibitory mechanism of β-galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol. Biochim Biophys Acta Gen Subj. 2016. doi:10.1016/j.bbagen.2016.08.002.

    Google Scholar 

  11. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, et al. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 2016;210:402–14.

    Article  CAS  Google Scholar 

  12. Kim S, Rhee MS. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control. 2016;60:447–54.

    Article  CAS  Google Scholar 

  13. Chauhan AK, Kang SC. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res Microbiol. 2014;165:559–65.

    Article  CAS  Google Scholar 

  14. Shi C, Sun Y, Zheng Z, Zhang X, Song K, Jia Z, et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem. 2016;197:100–6.

    Article  CAS  Google Scholar 

  15. Delgado B, Fernández PS, Palop A, Periago PM. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol. 2004;21:327–34.

    Article  CAS  Google Scholar 

  16. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49:2474–8.

    Article  CAS  Google Scholar 

  17. Evans JD, Martin SA. Effects of thymol on ruminal microorganisms. Curr Microbiol. 2000;41:336–40.

    Article  CAS  Google Scholar 

  18. Nafisi S, Hajiakhoondi A, Yektadoost A. Thymol and carvacrol binding to DNA: model for drug–DNA interaction. Biopolymers. 2004;74:345–51.

    Article  CAS  Google Scholar 

  19. Zeng WC, He Q, Sun Q, Zhong K, Gao H. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. Int J Food Microbiol. 2012;153:78–84.

    Article  Google Scholar 

  20. Wang LH, Wang MS, Zeng XA, Liu ZW. Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields. Biochim Biophys Acta Biomembr. 1858;2016:1791–800.

    Google Scholar 

  21. Wang Y, Zeng X, Zhou Z, Xing K, Tessema A, Zeng H, et al. Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control. 2015;55:54–61.

    Article  Google Scholar 

  22. Tao M, Zhang G, Pan J, Xiong C. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA. Spectrochim Acta A. 2016;155:28–37.

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhang G, Zhou X, Li Y. Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques. Anal Bioanal Chem. 2013;405:8871–83.

    Article  CAS  Google Scholar 

  24. Karami K, Lighvan ZM, Alizadeh AM, Poshteh-Shirani M, Khayamian T, Lipkowski J. Synthesis of a novel trinuclear palladium complex: the influence of an oxime chelate ligand on biological evaluation towards double-strand DNA, BSA protein and molecular modeling studies. RSC Adv. 2016;6:78424–35.

    Article  CAS  Google Scholar 

  25. Ricci CG, Netz PA. Docking studies on DNA-ligand interactions: building and application of a protocol to identify the binding mode. J Chem Inf Model. 2009;49:1925–35.

    Article  CAS  Google Scholar 

  26. Wang L, Wang MS, Zeng XA, Zhang Z, Gong D, Huang Y. Membrane destruction and DNA binding of Staphylococcus aureus cells induced by carvacrol, and its combined effect with pulsed electric field. J Agric Food Chem. 2016;64:6355–63.

    Article  CAS  Google Scholar 

  27. Lee J, Rudell DR, Davies PJ, Watkins CB. Metabolic changes in 1-methylcyclopropene (1-MCP)-treated ‘Empire’ apple fruit during storage. Metabolomics. 2012;8:742–53.

    Article  CAS  Google Scholar 

  28. Sharma U, Upadhyay D, Mewar S, Mishra A, Das P, Gupta SD, et al. Metabolic abnormalities of gastrointestinal mucosa in celiac disease: an in vitro proton nuclear magnetic resonance spectroscopy study. J Gastroenterol Hepatol. 2015;30:1492–8.

    Article  Google Scholar 

  29. Zhang G, Wang L, Zhou X, Li Y, Gong D. Binding characteristics of sodium saccharin with calf thymus DNA in vitro. J Agric Food Chem. 2014;62:991–1000.

    Article  CAS  Google Scholar 

  30. Liu K, Wen Y, Shi T, Li Y, Li F, Zhao YL, et al. DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. Chem Commun. 2014;50(65):9141–4.

    Article  CAS  Google Scholar 

  31. Prasad T, Gopal V, Rao NM. Structural changes in DNA mediated by cationic lipids alter in vitro transcriptional activity at low charge ratios. Biochim Biophys Acta Gen Subj. 2003;1619:59–69.

    Article  CAS  Google Scholar 

  32. Kaneda T. Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Mol Biol Rev. 1991;55:288–302.

    CAS  Google Scholar 

  33. Beales N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf. 2004;3:1–20.

    Article  CAS  Google Scholar 

  34. Keweloh H, Diefenbach R, Rehm HJ. Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch Microbiol. 1991;157:49–53.

    Article  CAS  Google Scholar 

  35. Denich T, Beaudette L, Lee H, Trevors J. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods. 2003;52:149–82.

    Article  CAS  Google Scholar 

  36. Bo T, Han PP, Su QZ, Fu P, Guo FZ, Zheng ZX, et al. Antimicrobial ε-poly-l-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control. 2016;61:123–34.

    Article  CAS  Google Scholar 

  37. Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed: Nanotechnol Biol Med. 2009;5:240–9.

    CAS  Google Scholar 

  38. Chatterjee T, Chatterjee BK, Majumdar D, Chakrabarti P. Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochim Biophys Acta Gen Subj. 1850;2015:299–306.

    Google Scholar 

  39. Miao J, Zhou J, Liu G, Chen F, Chen Y, Gao X, et al. Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp. tolerans FX-6. Food Control. 2016;59:609–13.

    Article  CAS  Google Scholar 

  40. Cao Y, He XW. Studies of interaction between safranine T and double helix DNA by spectral methods. Spectrochim Acta A. 1998;54:883–92.

    Article  Google Scholar 

  41. Ahmadi F, Alizadeh A, Bakhshandeh-Saraskanrood F, Jafari B, Khodadadian M. Experimental and computational approach to the rational monitoring of hydrogen-bonding interaction of 2-imidazolidinethione with DNA and guanine. Food Chem Toxicol. 2010;48:29–36.

    Article  CAS  Google Scholar 

  42. Shahabadi N, Fili SM, Kheirdoosh F. Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J Photochem Photobiol B. 2013;128:20–6.

    Article  CAS  Google Scholar 

  43. Wang L, Tao M, Zhang G, Li S, Gong D. Partial intercalative binding of the food colorant erythrosine to herring sperm DNA. RSC Adv. 2015;5:98366–76.

    Article  CAS  Google Scholar 

  44. Ni Y, Lin D, Kokot S. Synchronous fluorescence and UV–vis spectrometric study of the competitive interaction of chlorpromazine hydrochloride and Neutral Red with DNA using chemometrics approaches. Talanta. 2005;65:1295–302.

    Article  CAS  Google Scholar 

  45. Sarwar T, Rehman SU, Husain MA, Ishqi HM, Tabish M. Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies. Int J Biol Macromol. 2015;73:9–16.

    Article  CAS  Google Scholar 

  46. Maheswari PU, Palaniandavar M. DNA binding and cleavage properties of certain tetrammine ruthenium (II) complexes of modified 1, 10-phenanthrolines—effect of hydrogen-bonding on DNA-binding affinity. J Inorg Biochem. 2004;98:219–30.

    Article  Google Scholar 

  47. Ahmadi F, Ghanbari K. Proposed model for binding of permethrin and deltamethrin insecticides with ct-DNA, a structural comparative study. Ecotoxicol Environ Saf. 2014;106:136–45.

    Article  CAS  Google Scholar 

  48. Valero M, Frances E. Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiol. 2006;23:68–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21576099, 21376094) as well as S&T projects of Guangdong Province (2015A030312001 and 2013B020203001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-An Zeng or De-Ming Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00216-017-0264-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LH., Zhang, ZH., Zeng, XA. et al. Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: membrane damage and genomic DNA binding. Anal Bioanal Chem 409, 1615–1625 (2017). https://doi.org/10.1007/s00216-016-0102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0102-z

Keywords