Skip to main content
Log in

Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The mechanisms how Giardias attach to the intestinal epithelium remain unclear. None of the methods currently being used to measure the attachment force could provide a continuous nutrition supply and a micro-aerobic atmosphere to the Giardia. Besides, they are all labor-intensive. In the present research, a microfluidic method based on electric circuit analogy was developed. The input fluid flowed through the inlet channel with different lengths and was distributed in four assay chambers. Shear force gradients were generated in chambers, too. This allowed an easy control of fluids and the shear forces. Most importantly, the shear stress large enough to detach Giardia could be generated in laminar flow regime. Moreover, analysis could be accomplished in one single test. By applying inlet flow rates of 30, 60, and 120 μL ml–1, shear force gradients ranging from 19.47 to 60.50 Pa were generated. The adhesion forces of trophozoites were analyzed and the EC50 of the force that caused 50% trophozoites detachment was calculated as 36.60 Pa. This paper presents a novel method for measurement of Giardia adhesion force.

Measurement of Giardia adhesion force. Various of flow rates were applied to generate different shear forces and Giardia trophozoites remaining attached were counted (a-c). The percentages of attachment vs shear stress were plotted and the EC50 of adhesion force was calculated (d)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Escobedo AA, Hanevik K, Almirall P, Cimerman S, Alfonso M. Management of chronic Giardia infection. Expert Rev Anti Infect Ther. 2014;12:1143–57.

    Article  CAS  Google Scholar 

  2. Chavez B, Martinez-Palomo A. Giardia lamblia: freeze-fracture ultrastructure of the ventral disc plasma membrane. J Eukaryot Microbiol. 1995;42:136–41.

    Article  CAS  Google Scholar 

  3. Lauwaet T, Andersen Y, Van de Ven L, Eckmann L, Gillin FD. Rapid detachment of Giardia lamblia trophozoites as a mechanism of antimicrobial action of the isoflavone formononetin. J Antimicrob Chemother. 2010;65:531–4.

    Article  CAS  Google Scholar 

  4. Hansen WR, Tulyathan R, Dawson SC, Cande WZ, Fletcher DA. Giardia lamblia attachment force is insensitive to surface treatments. Eukaryot Cell. 2006;5:781–3.

    Article  CAS  Google Scholar 

  5. Magne D, Favennec L, Chochillon C, Gorenflot A, Meillet D. Role of cytoskeleton and surface lectins in Giardia duodenalis attachment to Caco2 cells. J Parasitol Res. 1991;77:659–62.

    Article  CAS  Google Scholar 

  6. Sousa MC, Gonçalves CA, Bairos VA, Poiares-Da-Silva J. Adherence of Giardia lamblia trophozoites to int-407 human intestinal cells. Clin Diagn Lab Immunol. 2001;8:258–65.

    CAS  Google Scholar 

  7. Erlandsen SL, Chase DG. Morphological alterations in the microvillous border of villous epithelial cells produced by intestinal microorganisms. Am J Clin Nutr. 1994;27:1277–86.

    Google Scholar 

  8. Hansen WR, Fletcher DA. Tonic shock induces detachment of Giardia lamblia. PLoS Negl Trop Dis. 2008;2, e169.

    Article  Google Scholar 

  9. Elmendorf HG, Dawson SC, McCaffery JM. The cytoskeleton of Giardia lamblia. Int J Parasitol. 2003;33(1):3–28.

    Article  Google Scholar 

  10. Mariante RM, Vancini RG, Melo AL, Benchimol M. Giardia lamblia: evaluation of the in vitro effects of nocodazole and colchicine on trophozoites. Exp Parasitol. 2005;110(1):62–72.

    Article  CAS  Google Scholar 

  11. Holberton DV. Attachment of Giardia-a hydrodynamic model based on flagellar activity. J Exp Biol. 1974;60(1):207–21.

    CAS  Google Scholar 

  12. Lenaghan SC, Davis CA, Henson WR, Zhang Z, Zhang M. High-speed microscopic imaging of flagella motility and swimming in. Giardia Lamblia tro Phozoites PNAS. 2011;108(34):E550–8.

    CAS  Google Scholar 

  13. House SA, Richter DJ, Pham JK, Dawson SC. Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog. 2011;7, e1002167.

    Article  Google Scholar 

  14. Woessner DJ, Dawson SC. The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment. Eukaryot Cell. 2012;11(3):292–301.

    Article  CAS  Google Scholar 

  15. Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem. 2004;76(18):5257–64.

    Article  CAS  Google Scholar 

  16. Gutierrez E, Groisman A. Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device. Anal Chem. 2007;79(6):2249–58.

    Article  CAS  Google Scholar 

  17. Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M. Micro total analysis systems: fundamental advances and biological applications. Anal Chem. 2014;86(1):95–118.

    Article  CAS  Google Scholar 

  18. Oh KW, Lee K, Ahn B, Furlani EP. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip. 2012;12(3):515–45.

    Article  CAS  Google Scholar 

  19. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73.

    Article  CAS  Google Scholar 

  20. Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A. Latest developments in microfluidic cell biology and analysis systems. Anal Chem. 2010;82(12):4848–64.

    Article  CAS  Google Scholar 

  21. Hayt WH, Kemmerly JE (2012) Engineering Circuit Analysis, Durbin 8th ed. McGraw-Hill Book Company Inc., New York

  22. Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002;4:261–86.

    Article  CAS  Google Scholar 

  23. Bruus H. Acoustofluidics 1: Governing equations in microfluidics. Lab Chip. 2011;11:3742–51.

    Article  CAS  Google Scholar 

  24. Zheng GX, Zhang XM, Yang YS, Zeng SR, Wei JF, Wang YH, et al. An integrated microfluidic device for culturing and screening of Giardia lamblia. Exp Parasitol. 2014;137:1–7.

    Article  CAS  Google Scholar 

  25. Wei CJ, Tian XF, Adam RD, Lu SQ. Giardia lamblia: intracellular localization of alpha8-giardin. Exp Parasitol. 2010;126(4):489–96.

    Article  CAS  Google Scholar 

  26. Gut J, Ang KK, Legac J, Arkin MR, Rosenthal PJ, McKerrow JH. An image-based assay for high throughput screening of Giardia lamblia. J Microbiol Methods. 2011;84(3):398–405.

    Article  CAS  Google Scholar 

  27. Wolfe DB, Qin D, Whitesides GM. Rapid prototyping of microstructures by soft lithography for biotechnology. Methods Mol Biol. 2010;583:81–107.

    Article  CAS  Google Scholar 

  28. McCann JA, Peterson SD, Plesniak MW, Webster TJ, Haberstroh KM. Non-uniform flow behavior in a parallel plate flow chamber alters endothelial cell responses. Ann Biomed Eng. 2005;33(3):328–36.

    Article  Google Scholar 

  29. Christ KV, Williamson KB, Masters KS, Turner KT. Measurement of single-cell adhesion strength using a microfluidic assay. Biomed Microdev. 2010;12(3):443–55.

    Article  Google Scholar 

  30. Zhong W, Ma H, Wang S, Gao X, Zhang W, Qin J. An integrated microfluidic device for characterizing chondrocyte metabolism in response to distinct levels of fluid flow stimulus. Microfluid Nanofluid. 2013;15:763–73.

    Article  Google Scholar 

  31. MacDonald MP, Spalding GC, Dholakia K. Microfluidic sorting in an optical lattice. Nature. 2003;426(6965):421–4.

    Article  CAS  Google Scholar 

  32. Ye N, Qin J, Shi W, Liu X, Lin B. Cell-based high content screening using an integrated microfluidic device. Lab Chip. 2007;7(12):1696–704.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Xian-Ming Liu (Dalian Institute of Chemical Physics, Chinese Academy of Sciences) for proofreading the manuscript. This work was supported by the National Natural Science Foundation of China (no. 41476085, no 81471807), Scientific Research Project of Liaoning Education Department (L2013478, L2013479), and Development Plan for Distinguished Young Scholars of Liaoning Province (LJQ2015005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hua Wang.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zheng, GX., Yang, YS. et al. Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay. Anal Bioanal Chem 409, 1451–1459 (2017). https://doi.org/10.1007/s00216-016-0080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0080-1

Keywords

Navigation