Skip to main content
Log in

Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.

Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castro L, Zhang R, Munoz JA, Gonzalez F, Blazquez LM, Sand W, et al. Characterization of exopolymeric substances (EPS) produced by Aeromonas hydrophila under reducing conditions. Biofouling. 2014;30(4):501–11.

    Article  CAS  Google Scholar 

  2. Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR. The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull. 2011;36(5):367–73.

    Article  CAS  Google Scholar 

  3. Nadell CD, Xavier JB, Levin SA, Foster KR. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 2008;6(1):171–9.

    Article  CAS  Google Scholar 

  4. Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28(6):882–94.

    Article  CAS  Google Scholar 

  5. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.

    CAS  Google Scholar 

  6. Pamp SJ, Gjermansen M, Tolker-Nielsen T. The biofilm matrix: a sticky framework. In: Kjelleberg S, Givskov M, editors. The biofilm mode of life: mechanisms and adaptations. UK: Horizon Bioscience; 2007. pp. 37–69.

  7. Mikkelsen H, Duck Z, Lilley KS, Welch M. Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol. 2007;189(6):2411–6.

    Article  CAS  Google Scholar 

  8. Patzold R, Keuntje M, Anders-von AA. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy. Anal Bioanal Chem. 2006;386(2):286–92.

    Article  Google Scholar 

  9. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, et al. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol. 2001;67(4):1461–9.

    Article  CAS  Google Scholar 

  10. Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS-matrix. Water Res. 2009;43(1):63–76.

    Article  CAS  Google Scholar 

  11. Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol. 2007;103(5):1808–20.

    Article  CAS  Google Scholar 

  12. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS. Raman microscopic analysis of single microbial cells. Anal Chem. 2004;76(15):4452–8.

    Article  CAS  Google Scholar 

  13. Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, et al. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng. 2011;108(5):1215–21.

    Article  CAS  Google Scholar 

  14. Li B, Ryan PW, Ray BH, Leister KJ, Sirimuthu NMS, Ryder AG. Rapid characterization and quality control of complex cell culture media solutions using Raman spectroscopy and chemometrics. Biotechnol Bioeng. 2010;107(2):290–301.

    Article  CAS  Google Scholar 

  15. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods. 2002;51(3):255–71.

    Article  CAS  Google Scholar 

  16. Mobili P, Londero A, De Antoni G, Gomez-Zavaglia A, Araujo-Andrade C, Avila-Donoso H, et al. Multivariate analysis of Raman spectra applied to microbiology. Discrimination of microorganisms at the species level. Rev Mex de Fis. 2010;56(5):378–85.

    CAS  Google Scholar 

  17. Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal Chem. 2000;72(22):5529–34.

    Article  CAS  Google Scholar 

  18. Chen YP, Zhang P, Guo JS, Fang F, Gao X, Li C. Functional groups characteristics of EPS in biofilm growing on different carriers. Chemosphere. 2013;92(6):633–8.

    Article  CAS  Google Scholar 

  19. Biglione NK. Fundamental kinetic parameters of suspended and biofilm atrazine degrading cells [dissertation]. The University of Iowa; 2007.

  20. Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol. 2001;183(19):5684–97.

    Article  CAS  Google Scholar 

  21. Govantes F, Garcia-Gonzalez V, Porrua O, Platero AI, Jimenez-Fernandez A, Santero E. Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP. FEMS Microbiol Lett. 2010;310(1):1–8.

    Article  CAS  Google Scholar 

  22. Ingle JD, Crouch SR. Spectrochemical analysis. Englewood Cliffs, NJ: Prentice Hall; 1988. p. pp. 501.

    Google Scholar 

  23. Carlberg CG. Statistical analysis: Microsoft Excel 2010. Indianapolis: Que; 2011.

  24. MacWilliams MP, Liao MK. Luria broth (LB) and Luria agar (LA) media and their uses protocol: American Society for Microbiology MicrobeLibrary. 2006. http://www.microbelibrary.org/component/resource/laboratory-test/3031-luria-broth-lb-and-luria-agar-la-media-and-their-uses-protocol. Accessed 20 Jan 2012.

  25. Tolker-Nielsen T, Sternberg C. Growing and analyzing biofilms in flow chambers. Curr Protoc Microbiol. 2011;21:1B.2.1–1B.2.17.

    Article  Google Scholar 

  26. Nielsen PH, Jahn A. Extraction of EPS. In: Wingender J, Neu TR, Flemming HC, editors. Microbial extracellular polymeric substances. Berlin Heidelberg: Springer; 1999. pp. 49–72.

  27. The University of Iowa Central Microscopy Research Facility. Scanning electron microscopy. http://cmrf.research.uiowa.edu/scanning-electron-microscopy. Accessed 15 Oct 2013.

  28. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2015;46(1):4–20.

    Article  CAS  Google Scholar 

  29. Kamnev AA, Tarantilis PA, Antonyuk LP, Bespalova LA, Polissiou MG, Colina M, et al. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7. J Mol Struct. 2001;563:199–207.

    Article  Google Scholar 

  30. Naumann D, Keller S, Helm D, Schultz C, Schrader B. FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct. 1995;347:399–405.

    Article  CAS  Google Scholar 

  31. Ude S, Bailey MJ, Huang WE, Spiers AJ. The environmental plasmid pQBR103 alters the single-cell Raman spectral profile of Pseudomonas fluorescens SBW25. Microb Ecol. 2007;53(3):494–7.

    Article  CAS  Google Scholar 

  32. Schwartz T, Jungfer C, Heißler S, Friedrich F, Faubel W, Obst U. Combined use of molecular biology taxonomy, Raman spectrometry, and ESEM imaging to study natural biofilms grown on filter materials at waterworks. Chemosphere. 2009;77(2):249–57.

    Article  CAS  Google Scholar 

  33. Xie C, Li YQ, Tang W, Newton RJ. Study of dynamical process of heat denaturation in optically trapped single microorganisms by near-infrared Raman spectroscopy. J Appl Phys. 2003;94(9):6138–42.

    Article  CAS  Google Scholar 

  34. Li-Chan ECY. The applications of Raman spectroscopy in food science. Trends Food Sci Technol. 1996;7(11):361–70.

    Article  CAS  Google Scholar 

  35. Stockel S, Kirchhoff J, Neugebauer U, Rosch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2016;47:89–109.

    Article  Google Scholar 

  36. Busse HJ, Denner EBM, Lubitz W. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol. 1996;47(1):3–38.

    Article  CAS  Google Scholar 

  37. Eboigbodin KE, Biggs CA. Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules. 2008;9:686–95.

    Article  CAS  Google Scholar 

  38. Apicella MA, Shao J, Neil RB. Methods for studying Neisseria meningitidis biofilms. In: Christodoulides, editor. Neisseria meningitidis: advanced methods and protocols. New York: Springer; 2012. pp. 169–184.

  39. Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, et al. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis. 2014;72(3):143–60.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Graduate Assistance in Areas of National Need (P200A090350) and the University of Iowa Center for Health Effects of Environmental Contamination. We thank the University of Iowa Central Microscopy Research Facility for access to the Raman confocal microscope and scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya L. Peeples.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, V.A., Jessop, J.L.P. & Peeples, T.L. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy. Anal Bioanal Chem 409, 1441–1449 (2017). https://doi.org/10.1007/s00216-016-0077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0077-9

Keywords

Navigation