Skip to main content
Log in

NMR-based metabolomic approach to study urine samples of chronic inflammatory rheumatic disease patients

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The nuclear magnetic resonance (NMR)-based metabolomic approach was used as analytical methodology to study the urine samples of chronic inflammatory rheumatic disease (CIRD) patients. The urine samples of CIRD patients were compared to the ones of both healthy subjects and patients with multiple sclerosis (MS), another immuno-mediated disease. Urine samples collected from 39 CIRD patients, 25 healthy subjects, and 26 MS patients were analyzed using 1H NMR spectroscopy, and the NMR spectra were examined using partial least squares-discriminant analysis (PLS-DA). PLS-DA models were validated by a double cross-validation procedure and randomization tests. Clear discriminations between CIRD patients and healthy controls (average diagnostic accuracy 83.5 ± 1.9%) as well as between CIRD patients and MS patients (diagnostic accuracy 81.1 ± 1.9%) were obtained. Leucine, alanine, 3-hydroxyisobutyric acid, hippuric acid, citric acid, 3-hydroxyisovaleric acid, and creatinine contributed to the discrimination; all of them being in a lower concentration in CIRD patients as compared to controls or to MS patients. The application of NMR metabolomics to study these still poorly understood diseases can be useful to better clarify the pathologic mechanisms; moreover, as a holistic approach, it allowed the detection of, by means of anomalous metabolic traits, the presence of other pathologies or pharmaceutical treatments not directly connected to CIRDs, giving comprehensive information on the general health state of individuals.

NMR-based metabolomic approach as a tool to study urine samples in CIRD patients with respect to MS patients and healthy controls

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIRDs:

Chronic inflammatory rheumatic diseases

COSY:

Correlation spectroscopy

CSF:

Cerebrospinal fluid

HMBC:

Heteronuclear multiple bond correlation

HPLC:

High-performance liquid chromatography

HSQC:

Heteronuclear single quantum coherence

MS:

Multiple sclerosis

NMR:

Nuclear magnetic resonance

PLS-DA:

Partial least squares-discriminant analysis

TMSP:

Trimethylsilyl propionate

UTIs:

Urinary tract infections

VIP:

Variable importance in projection

References

  1. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41:D801–7. doi:10.1093/nar/gks1065.

    Article  CAS  Google Scholar 

  2. Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem. 2007;79:6995–7004. doi:10.1021/ac0708588.

    Article  CAS  Google Scholar 

  3. Liquid state 1H high field NMR in food analysis. http://www.sciencedirect.com/science/article/pii/S0079656512000209. Accessed 7 July 2016.

  4. Pelantová H, Bártová S, Anýž J, Holubová M, Železná B, Maletínská L, et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal Bioanal Chem. 2015;408:567–78. doi:10.1007/s00216-015-9133-0.

    Article  Google Scholar 

  5. Assfalg M, Bertini I, Colangiuli D, Luchinat C, Schäfer H, Schütz B, et al. Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci. 2008;105:1420–4. doi:10.1073/pnas.0705685105.

    Article  CAS  Google Scholar 

  6. Bernini P, Bertini I, Luchinat C, Nepi S, Saccenti E, Schäfer H, et al. Individual human phenotypes in metabolic space and time. J Proteome Res. 2009;8:4264–71. doi:10.1021/pr900344m.

    Article  CAS  Google Scholar 

  7. Ghini V, Saccenti E, Tenori L, Assfalg M, Luchinat C. Allostasis and resilience of the human individual metabolic phenotype. J Proteome Res. 2015. doi:10.1021/acs.jproteome.5b00275.

    Google Scholar 

  8. Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr. 2012;32:183–202. doi:10.1146/annurev-nutr-072610-145159.

    Article  CAS  Google Scholar 

  9. Bertini I, Calabrò A, De Carli V, Luchinat C, Nepi S, Porfirio B, et al. The metabonomic signature of celiac disease. J Proteome Res. 2008;8:170–7. doi:10.1021/pr800548z.

    Article  Google Scholar 

  10. Priori R, Scrivo R, Brandt J, Valerio M, Casadei L, Valesini G, et al. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev. 2013;12:1022–30. doi:10.1016/j.autrev.2013.04.002.

    Article  CAS  Google Scholar 

  11. Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S, et al. Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol. 2015;9:128–39. doi:10.1016/j.molonc.2014.07.012.

    Article  CAS  Google Scholar 

  12. Bernini P, Bertini I, Luchinat C, Tenori L, Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res. 2011;10:4983–92. doi:10.1021/pr200452j.

    Article  CAS  Google Scholar 

  13. Wang L, Wu L-F, Lu X, Mo X-B, Tang Z-X, Lei S-F, et al. Integrated analyses of gene expression profiles digs out common markers for rheumatic diseases. PLoS ONE. 2015;10:e0137522. doi:10.1371/journal.pone.0137522.

    Article  Google Scholar 

  14. Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR. 2011;49:231–43. doi:10.1007/s10858-011-9489-1.

    Article  CAS  Google Scholar 

  15. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The human urine metabolome. PLoS ONE. 2013;8:e73076. doi:10.1371/journal.pone.0073076.

    Article  CAS  Google Scholar 

  16. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–90. doi:10.1021/ac051632c.

    Article  CAS  Google Scholar 

  17. Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Stat Graph. 1996;5:299–314.

    Google Scholar 

  18. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583. doi:10.2307/2280779.

    Article  Google Scholar 

  19. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

    Google Scholar 

  20. Hassan-Smith G, Wallace GR, Douglas MR, Sinclair AJ. The role of metabolomics in neurological disease. J Neuroimmunol. 2012;248:48–52. doi:10.1016/j.jneuroim.2012.01.009.

    Article  CAS  Google Scholar 

  21. Young SP, Kapoor SR, Viant MR, Byrne JJ, Filer A, Buckley CD, et al. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. 2013;65:2015–23. doi:10.1002/art.38021.

    Article  CAS  Google Scholar 

  22. Zabek A, Swierkot J, Malak A, Zawadzka I, Deja S, Bogunia-Kubik K, et al. Application of 1H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J Pharm Biomed Anal. 2016;117:544–50. doi:10.1016/j.jpba.2015.10.007.

    Article  CAS  Google Scholar 

  23. Nevedomskaya E, Pacchiarotta T, Artemov A, Meissner A, van Nieuwkoop C, van Dissel JT, et al. 1H NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data. Metabolomics. 2012;8:1227–35. doi:10.1007/s11306-012-0411-y.

    Article  CAS  Google Scholar 

  24. Puntis D, Malik S, Saravanan V, Rynne M, Heycock C, Hamilton J, et al. Urinary tract infections in patients with rheumatoid arthritis. Clin Rheumatol. 2012;32:355–60. doi:10.1007/s10067-012-2129-7.

    Article  Google Scholar 

  25. Munro R, Capell H. Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response. Ann Rheum Dis. 1997;56:326–9.

    Article  CAS  Google Scholar 

  26. Willer B, Stucki G, Hoppeler H, Brühlmann P, Krähenbühl S. Effects of creatine supplementation on muscle weakness in patients with rheumatoid arthritis. Rheumatol Oxf Engl. 2000;39:293–8.

    Article  CAS  Google Scholar 

  27. Krähenbühl S, Willer B, Brühlmann P, Hoppeler H, Stucki G. Carnitine homeostasis in patients with rheumatoid arthritis. Clin Chim Acta. 1999;279:35–45. doi:10.1016/S0009-8981(98)00161-2.

    Article  Google Scholar 

  28. van Wietmarschen HA, Dai W, van der Kooij AJ, Reijmers TH, Schroën Y, Wang M, et al. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLoS ONE. 2012;7:e44331. doi:10.1371/journal.pone.0044331.

    Article  Google Scholar 

  29. Kapoor SR, Filer A, Fitzpatrick MA, Fisher BA, Taylor PC, Buckley CD, et al. Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2013;65:1448–56. doi:10.1002/art.37921.

    Article  CAS  Google Scholar 

  30. Mount D, Sayegh MH, Singh AK. Core concepts in the disorders of fluid, electrolytes and acid–base balance. New York: Springer Science & Business Media; 2012.

    Google Scholar 

  31. Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner MR, et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology. 2014;83:1492–9.

    Article  CAS  Google Scholar 

  32. Tavazzi B, Batocchi AP, Amorini AM, Nociti V, D’Urso S, Longo S, et al. Serum metabolic profile in multiple sclerosis patients. Mult Scler Int. 2011;2011:e167156. doi:10.1155/2011/167156.

    Google Scholar 

  33. Reinke SN, Broadhurst DI, Sykes BD, Baker GB, Catz I, Warren KG, et al. Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult Scler J. 2014;20:1396–400. doi:10.1177/1352458513516528.

    Article  CAS  Google Scholar 

  34. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3:431–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been developed within the “Unità di Metabolomica: Studi su Alimenti, Nutraceutici e Fluidi biologici” of the Sapienza University of Rome. This work has been partially supported by Fondazione Veronesi that granted L.T. through the Post-Doctoral Fellowship 2015 and by Ateneo 2015 (Sapienza University of Rome prot C26A15CJ98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Valesini.

Ethics declarations

The study received the approval by the local ethics committee in accordance with local requirements, and at the time of the collection, informed consent was obtained from each participant enrolled in the study.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Alessia Vignoli, Donatella Maria Rodio, Anna Bellizzi and Anatoly Petrovich Sobolev contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignoli, A., Rodio, D.M., Bellizzi, A. et al. NMR-based metabolomic approach to study urine samples of chronic inflammatory rheumatic disease patients. Anal Bioanal Chem 409, 1405–1413 (2017). https://doi.org/10.1007/s00216-016-0074-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0074-z

Keywords

Navigation