Abstract
Re-analysis of two breast cancer cell lines, MCF-7 and MDA-MB-231, has shown multiple isomeric structures exposed by sequential mass spectrometry, MSn. Several released glycan compositions were re-evaluated, which indicated variations in polylactosamine and fucosylation structures. Probable isomer numbers, when considering both stereo and structural entities, are significant and the varying types are mentioned. The structural isomers of linkage position are most frequently considered, while stereo isomers are usually assumed from biosynthetic data. Evaluation of any new sample should be cautious and merits careful attention to empirical data. While isomers are usually considered a chromatographic problem (e.g., LCMS, IMMS) and most frequently considered a separations problem, such results will always be challenged by identification and documentation. MSn data provide a direct spatial solution that includes spectral data for characterization (mass and abundance) supported by a universal library match feature.






Similar content being viewed by others
Abbreviations
- CID:
-
Collision-induced disassociation
- IM:
-
Ion mobility
- LC:
-
Liquid chromatography
- MSn :
-
Sequential mass spectrometry
References
Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999;1473(1):4–8.
Hakomori S. Traveling for the glycosphingolipid path. Glycoconj J. 2000;17(7–9):627–47.
Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64. doi:10.1146/annurev.bi.54.070185.003215.
Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12(4):43R–56R.
Stanley P. Golgi glycosylation. Cold Spring Harb Perspect Biol. 2011;3(4). doi: 10.1101/cshperspect.a005199.
Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. Bioessays. 1999;21(5):412–21. doi:10.1002/(SICI)1521-1878(199905)21:5<412::AID-BIES8>3.0.CO;2-5.
Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta. 1999;1473(1):21–34.
Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta. 1999;1473(1):67–95.
Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A. 2002;99(16):10231–3. doi:10.1073/pnas.172380699.
Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):77–99.
Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004;95(5):377–84.
Ono M, Hakomori S. Glycosylation defining cancer cell motility and invasiveness. Glycoconj J. 2004;20(1):71–8. doi:10.1023/B:GLYC.0000018019.22070.7d.
Jacobs PP, Sackstein R. CD44 and HCELL: preventing hematogenous metastasis at step 1. FEBS Lett. 2011. doi:10.1016/j.febslet.2011.07.039.
Hanley WD, Napier SL, Burdick MM, Schnaar RL, Sackstein R, Konstantopoulos K. Variant isoforms of CD44 are P- and L-selectin ligands on colon carcinoma cells. FASEB J. 2006;20(2):337–9. doi:10.1096/fj.05-4574fje.
Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem. 2010;56(2):223–36. doi:10.1373/clinchem.2009.136333.
Lebrilla CB, An HJ. The prospects of glycan biomarkers for the diagnosis of diseases. Mol Biosyst. 2009;5(1):17–20. doi:10.1039/b811781k.
Packer NH, von der Lieth CW, Aoki-Kinoshita KF, Lebrilla CB, Paulson JC, Raman R, et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11–13, 2006). Proteomics. 2008;8(1):8–20. doi:10.1002/pmic.200700917.
Goldman R, Ressom HW, Varghese RS, Goldman L, Bascug G, Loffredo CA, et al. Detection of hepatocellular carcinoma using glycomic analysis. Clin Cancer Res. 2009;15(5):1808–13. doi:10.1158/1078-0432.CCR-07-5261.
Mechref Y, Hussein A, Bekesova S, Pungpapong V, Zhang M, Dobrolecki LE, et al. Quantitative serum glycomics of esophageal adenocarcinoma and other esophageal disease onsets. J Proteome Res. 2009;8(6):2656–66. doi:10.1021/pr8008385.
Leiserowitz GS, Lebrilla C, Miyamoto S, An HJ, Duong H, Kirmiz C, et al. Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int J Gynecol Cancer. 2008;18(3):470–5. doi:10.1111/j.1525-1438.2007.01028.x.
Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4(6):759–67.
Cummings RD. The repertoire of glycan determinants in the human glycome. Mol Biosyst. 2009;5(10):1087–104. doi:10.1039/b907931a.
McLafferty FW. Interpretation of Mass Spectra. 2nd ed. Reading, MA: W. A. Benjamin, Inc.; 1973.
Zaia J. Mass spectrometry and glycomics. OMICS. 2010;14(4):401–18. doi:10.1089/omi.2009.0146.
Tao S, Huang Y, Boyes BE, Orlando R. Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal Chem. 2014;86(21):10584–90. doi:10.1021/ac5020996.
Kolarich D, Windwarder M, Alagesan K, Altmann F. Isomer-specific analysis of released N-glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol Biol. 2015;1321:427–35. doi:10.1007/978-1-4939-2760-9_29.
Stavenhagen K, Kolarich D, Wuhrer M. Clinical glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia. 2015;78(5–6):307–20. doi:10.1007/s10337-014-2813-7.
Michael C, Rizzi AM. Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase. J Chromatogr A. 2015;1383:88–95. doi:10.1016/j.chroma.2015.01.028.
Gaye MM, Kurulugama R, Clemmer DE. Investigating carbohydrate isomers by IMS-CID-IMS-MS: precursor and fragment ion cross-sections. Analyst. 2015;140(20):6922–32. doi:10.1039/c5an00840a.
Hoffmann W, Hofmann J, Pagel K. Energy-resolved ion mobility-mass spectrometry—a concept to improve the separation of isomeric carbohydrates. J Am Soc Mass Spectrom. 2014;25(3):471–9. doi:10.1007/s13361-013-0780-0.
Huang Y, Dodds ED. Discrimination of isomeric carbohydrates as the electron transfer products of group II cation adducts by ion mobility spectrometry and tandem mass spectrometry. Anal Chem. 2015;87(11):5664–8. doi:10.1021/acs.analchem.5b00759.
Huang Y, Dodds ED. Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst. 2015;140(20):6912–21. doi:10.1039/c5an01093d.
Lee S, Valentine SJ, Reilly JP, Clemmer DE. Analyzing a Mixture of Disaccharides by IMS-VUVPD-MS. Int J Mass Spectrom. 2012;309:161–7. doi:10.1016/j.ijms.2011.09.013.
Li H, Bendiak B, Kaplan K, Davis E, Siems WF, Hill Jr HH. Evaluation of ion mobility-mass spectrometry for determining the isomeric heterogeneity of oligosaccharide-alditols derived from bovine submaxillary mucin. Int J Mass Spectrom. 2013;352:9–18. doi:10.1016/j.ijms.2013.07.015.
Li H, Bendiak B, Siems WF, Gang DR, Hill Jr HH. Ion mobility mass spectrometry analysis of isomeric disaccharide precursor, product and cluster ions. Rapid Commun Mass Spectrom. 2013;27(23):2699–709. doi:10.1002/rcm.6720.
Pu Y, Ridgeway ME, Glaskin RS, Park MA, Costello CE, Lin C. Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Anal Chem. 2016;88(7):3440–3. doi:10.1021/acs.analchem.6b00041.
Guerrero A, Lebrilla CB. New strategies for resolving oligosaccharide isomers by exploiting mechanistic and thermochemical aspects of fragment ion formation. Int J Mass Spectrom. 2013;354–355:19–25. doi:10.1016/j.ijms.2013.05.002.
Han L, Costello CE. Electron transfer dissociation of milk oligosaccharides. J Am Soc Mass Spectrom. 2011;22(6):997–1013. doi:10.1007/s13361-011-0117-9.
Jovanovic M, Tyldesley-Worster R, Pohlentz G, Peter-Katalinic J. MALDI Q-TOF CID MS for diagnostic ion screening of human milk oligosaccharide samples. Int J Mol Sci. 2014;15(4):6527–43. doi:10.3390/ijms15046527.
Konda C, Londry FA, Bendiak B, Xia Y. Assignment of the stereochemistry and anomeric configuration of sugars within oligosaccharides via overlapping disaccharide ladders using MS(n). J Am Soc Mass Spectrom. 2014;25(8):1441–50. doi:10.1007/s13361-014-0881-4.
Nagy G, Pohl NL. Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers. Anal Chem. 2015;87(8):4566–71. doi:10.1021/acs.analchem.5b00760.
Nagy G, Pohl NL. Complete hexose isomer identification with mass spectrometry. J Am Soc Mass Spectrom. 2015;26(4):677–85. doi:10.1007/s13361-014-1072-z.
Tan Y, Polfer NC. Linkage and anomeric differentiation in trisaccharides by sequential fragmentation and variable-wavelength infrared photodissociation. J Am Soc Mass Spectrom. 2015;26(2):359–68. doi:10.1007/s13361-014-1025-6.
Garner B, Priestman DA, Stocker R, Harvey DJ, Butters TD, Platt FM. Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J Lipid Res. 2002;43(2):205–14.
Aoki K, Perlman M, Lim JM, Cantu R, Wells L, Tiemeyer M. Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem. 2007;282(12):9127–42. doi:10.1074/jbc.M606711200.
Canis K, McKinnon TA, Nowak A, Panico M, Morris HR, Laffan M, et al. The plasma von Willebrand factor O-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs. J Thromb Haemost. 2010;8(1):137–45. doi:10.1111/j.1538-7836.2009.03665.x.
Alley Jr WR, Madera M, Mechref Y, Novotny MV. Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem. 2010;82(12):5095–106. doi:10.1021/ac100131e.
Carlson DM. Oligosaccharides isolated from pig submaxillary mucin. J Biol Chem. 1966;241(12):2984–6.
Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom. 2005;19(23):3421–8. doi:10.1002/rcm.2210.
Ashline DJ, Hanneman AJ, Zhang H, Reinhold VN. Structural documentation of glycan epitopes: sequential mass spectrometry and spectral matching. J Am Soc Mass Spectrom. 2014;25(3):444–53. doi:10.1007/s13361-013-0776-9.
Ashline DJ, Yu Y, Lasanajak Y, Song X, Hu L, Ramani S, et al. Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses. Mol Cell Proteomics. 2014;13(11):2961–74. doi:10.1074/mcp.M114.039925.
Nomenclature of glycolipids. Carbohydr Res. 1998;312:167–75.
Ashline D, Singh S, Hanneman A, Reinhold V. Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal Chem. 2005;77(19):6250–62. doi:10.1021/ac050724z.
Li Y, Teneberg S, Thapa P, Bendelac A, Levery SB, Zhou D. Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology. 2008;18(2):158–65. doi:10.1093/glycob/cwm129.
Powlesland AS, Hitchen PG, Parry S, Graham SA, Barrio MM, Elola MT, et al. Targeted glycoproteomic identification of cancer cell glycosylation. Glycobiology. 2009;19(8):899–909. doi:10.1093/glycob/cwp065.
Acknowledgments
This work was supported, in part, by a Program of Excellence in Glycosciences grant (P01 HL107146, PI Robert Sackstein) and Glycan Connections, LLC, Lee NH.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David Muddiman.
Rights and permissions
About this article
Cite this article
Ashline, D.J., Zhang, H. & Reinhold, V.N. Isomeric complexity of glycosylation documented by MSn . Anal Bioanal Chem 409, 439–451 (2017). https://doi.org/10.1007/s00216-016-0018-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-016-0018-7


