Skip to main content
Log in

Development of an analytical method to determine oxy-PAHs and PAHs in Taxus baccata leaves

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method was developed and optimized for the quantification of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 oxygenated PAHs in Taxus baccata leaves. Emphasis was given to the development of an in-cell cleanup step using pressurized solvent extraction, a cleanup step using solid-phase extraction, and the instrumental analysis by GC-HRMS. Different extraction temperatures (between 50 and 200 °C) and Florisil quantities were evaluated for the extraction process. Based on the evaluation of both recoveries and matrix effect factors, a temperature of 200 °C and 1 g Florisil was selected as the optimum. However, the in-cell cleanup was not sufficient in the long term due to increasing chromatographic peak broadening, and further cleanup was necessary. Solid-phase extraction (using Florisil) was evaluated, and breakthrough curves were acquired for all target compounds to determine the optimal elution volume and avoiding matrix interference. Recoveries of the target compounds ranged from 58 to 87 % for the PAHs and from 5 to 105 % for the oxy-PAHs. Matrix effects were determined for all individual target compounds. The optimized method was applied to T. baccata samples obtained from ten sampling locations in Ghent, Belgium. This is the first biomonitoring study in Ghent for PAHs and oxy-PAHs. The presence of significant amounts of toxicologically relevant oxygenated PAHs (Oxy-PAHs) (can enhance ROS formation in human lung cells) in T. baccata was confirmed (max ∑Oxy-PAHs: 230 ng/g; max ∑PAHs: 389 ng/g). This means that these oxygenated PAHs are important pollutants and should be included in future monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DCM:

Dichloromethane

DW:

Dry weight content

HRMS:

High-resolution mass spectrometry

HVS:

High-volume sampling

ME:

Matrix effects

NQ:

Non-quantifiable (S/N<10)

Oxy-PAHs:

Oxygenated PAHs

PAHs:

Polycyclic aromatic hydrocarbons

PLE:

Pressurized liquid extraction

PM:

Particulate matter

PM10 :

Particulate matter with an aerodynamic diameter less than 10 μm

PM2.5 :

Particulate matter with an aerodynamic diameter less than 2.5 μm

RE:

Recovery

ROS:

Reactive oxygen species

RPA:

Relative peak area

RSD:

Relative standard deviation (%)

RSRF:

Relative sample response factor

S/N:

Signal to noise ratio

SPE:

Solid-phase extraction

References

  1. Jacobs L, Buczynska A, Walgraeve C, Delcloo A, Potgieter-Vermaak S, Van Grieken R, et al. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons. Environ Res. 2012;117:60–7. doi:10.1016/j.envres.2012.05.003.

    Article  CAS  Google Scholar 

  2. Wei C, Han Y, Bandowe BAM, Cao J, Huang R-J, Ni H, et al. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi’an, central China. Sci Total Environ. 2015;505:814–22. doi:10.1016/j.scitotenv.2014.10.054.

    Article  CAS  Google Scholar 

  3. Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert LB, Oberg L, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio. 2007;36(6):475–85. doi:10.1579/0044-7447(2007)36[475:sfatho]2.0.co;2.

    Article  CAS  Google Scholar 

  4. Wilcke W, Kiesewetter M, Bandowe BAM. Microbial formation and degradation of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in soil during short-term incubation. Environ Pollut. 2014;184:385–90. doi:10.1016/j.envpol.2013.09.020.

    Article  CAS  Google Scholar 

  5. Walgraeve C, Demeestere K, Dewulf J, Zimmermann R, Van Langenhove H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmos Environ. 2010;44(15):1831–46. doi:10.1016/j.atmosenv.2009.12.004.

    Article  CAS  Google Scholar 

  6. Noth EM, Hammond SK, Biging GS, Tager IB. Mapping and modeling airborne urban phenanthrene distribution using vegetation biomonitoring. Atmos Environ. 2013;77:518–24. doi:10.1016/j.atmosenv.2013.05.056.

    Article  CAS  Google Scholar 

  7. Walgraeve C, Demeestere K, De Wispelaere P, Dewulf J, Lintelmann J, Fischer K, et al. Selective accurate-mass-based analysis of 11 oxy-PAHs on atmospheric particulate matter by pressurized liquid extraction followed by high-performance liquid chromatography and magnetic sector mass spectrometry. Anal Bioanal Chem. 2012;402(4):1697–711. doi:10.1007/s00216-011-5568-0.

    Article  CAS  Google Scholar 

  8. Walgraeve C, Chantara S, Sopajaree K, De Wispelaere P, Demeestere K, Van Langenhove H. Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry. Atmos Environ. 2015;107:262–72. doi:10.1016/j.atmosenv.2015.02.051.

    Article  CAS  Google Scholar 

  9. Augusto S, Maguas C, Branquinho C. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses—a review. Environ Pollut. 2013;180:330–8. doi:10.1016/j.envpol.2013.05.019.

    Article  CAS  Google Scholar 

  10. Sanz-Landaluze J, Bocanegra-Salazar M, Ortiz-Perez D, Camara C. Miniaturisated method for the analysis of polycyclic aromatic hydrocarbons in leaf samples. J Chromatogr A. 2010;1217(22):3567–74. doi:10.1016/j.chroma.2010.03.049.

    Article  CAS  Google Scholar 

  11. Foan L, Sablayrolles C, Elustondo D, Lasheras E, Gonzalez L, Ederra A, et al. Reconstructing historical trends of polycyclic aromatic hydrocarbon deposition in a remote area of Spain using herbarium moss material. Atmos Environ. 2010;44(26):3207–14. doi:10.1016/j.atmosenv.2010.05.019.

    Article  CAS  Google Scholar 

  12. Foan L, Simon V. Optimization of pressurized liquid extraction using a multivariate chemometric approach and comparison of solid-phase extraction cleanup steps for the determination of polycyclic aromatic hydrocarbons in mosses. J Chromatogr A. 2012;1256:22–31. doi:10.1016/j.chroma.2012.07.065.

    Article  CAS  Google Scholar 

  13. Navarro-Ortega A, Ratola N, Hildebrandt A, Alves A, Lacorte S, Barcelo D. Environmental distribution of PAHs in pine needles, soils, and sediments. Environ Sci Pollut Res Int. 2012;19(3):677–88. doi:10.1007/s11356-011-0610-5.

    Article  CAS  Google Scholar 

  14. Ratola N, Alves A, Lacorte S, Barcelo D. Distribution and sources of PAHs using three pine species along the Ebro River. Environ Monit Assess. 2012;184(2):985–99. doi:10.1007/s10661-011-2014-x.

    Article  CAS  Google Scholar 

  15. Rodriguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier A, Franzaring J. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ. 2012;55:35–42. doi:10.1016/j.atmosenv.2012.03.026.

    Article  CAS  Google Scholar 

  16. Tomashuk TA, Truong TM, Mantha M, McGowin AE. Atmospheric polycyclic aromatic hydrocarbon profiles and sources in pine needles and particulate matter in Dayton, Ohio, USA. Atmos Environ. 2012;51:196–202. doi:10.1016/j.atmosenv.2012.01.028.

    Article  CAS  Google Scholar 

  17. Howe TS, Billings S, Stolzberg RJ. Sources of polycyclic aromatic hydrocarbons and hexachlorobenzene in spruce needles of eastern Alaska. Environ Sci Technol. 2004;38(12):3294–8. doi:10.1021/es034751n.

    Article  CAS  Google Scholar 

  18. Ratola N, Alves A, Psillakis E. Biomonitoring of polycyclic aromatic hydrocarbons contamination in the island of crete using pine needles. Water Air Soil Pollut. 2011;215(1–4):189–203. doi:10.1007/s11270-010-0469-y.

    Article  CAS  Google Scholar 

  19. St-Amand AD, Mayer PM, Blais JM. Seasonal trends in vegetation and atmospheric concentrations of PAHs and PBDEs near a sanitary landfill. Atmos Environ. 2008;42(13):2948–58. doi:10.1016/j.atmosenv.2007.12.050.

    Article  CAS  Google Scholar 

  20. Zhu X, Pfister G, Henkelmann B, Kotalik J, Bernhoeft S, Fiedler S, et al. Simultaneous monitoring of profiles of polycyclic aromatic hydrocarbons in contaminated air with semipermeable membrane devices and spruce needles. Environ Pollut. 2008;156(2):461–6. doi:10.1016/j.envpol.2008.01.023.

    Article  CAS  Google Scholar 

  21. Alfani A, De Nicola F, Maisto G, Prati MV. Long-term PAH accumulation after bud break in Quercus ilex L. leaves in a polluted environment. Atmos Environ. 2005;39(2):307–14. doi:10.1016/j.atmosenv.2004.09.001.

    Article  CAS  Google Scholar 

  22. De Nicola F, Claudia L, MariaVittoria P, Giulia M, Anna A. Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmos Environ. 2011;45(7):1428–33. doi:10.1016/j.atmosenv.2010.12.022.

    Article  Google Scholar 

  23. De Nicola F, Maisto G, Prati MV, Alfani A. Temporal variations in PAH concentrations in Quercus ilex L. (holm oak) leaves in an urban area. Chemosphere. 2005;61(3):432–40. doi:10.1016/j.chemosphere.2005.01.082.

    Article  Google Scholar 

  24. De Nicola F, Maisto G, Prati MV, Alfani A. Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut. 2008;153(2):376–83. doi:10.1016/j.envpol.2007.08.008.

    Article  Google Scholar 

  25. De Nicola F, Murena F, Costagliola MA, Alfani A, Baldantoni D, Prati MV, et al. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon. Environ Sci Pollut Res Int. 2013;20(7):4969–79. doi:10.1007/s11356-012-1456-1.

    Article  Google Scholar 

  26. De Nicola F, Spagnuolo V, Baldantoni D, Sessa L, Alfani A, Bargagli R, et al. Improved biomonitoring of airborne contaminants by combined use of holm oak leaves and epiphytic moss. Chemosphere. 2013;92(9):1224–30. doi:10.1016/j.chemosphere.2013.04.050.

    Article  Google Scholar 

  27. Orecchio S. PAHs associated with the leaves of Quercus ilex L.: extraction, GC-MS analysis, distribution and sources assessment of air quality in the Palermo (Italy) area. Atmos Environ. 2007;41(38):8669–80. doi:10.1016/j.atmosenv.2007.07.027.

    Article  CAS  Google Scholar 

  28. Domeno C, Canellas E, Alfaro P, Rodriguez-Lafuente A, Nerin C. Atmospheric pressure gas chromatography with quadrupole time of flight mass spectrometry for simultaneous detection and quantification of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in mosses. J Chromatogr A. 2012;1252:146–54. doi:10.1016/j.chroma.2012.06.061.

    Article  CAS  Google Scholar 

  29. Holoubek I, Klanova J, Jarkovsky J, Kohoutek J. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Part I. Ambient air and wet deposition 1996–2005. J Environ Monit. 2007;9(6):557–63. doi:10.1039/b700750g.

    Article  CAS  Google Scholar 

  30. Krommer V, Zechmeister HG, Roder I, Scharf S, Hanus-Illnar A. Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere. 2007;67(10):1956–66. doi:10.1016/j.chemosphere.2006.11.060.

    Article  CAS  Google Scholar 

  31. Otvos E, Kozak IO, Fekete J, Sharma VK, Tuba Z. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Sci Total Environ. 2004;330(1–3):89–99. doi:10.1016/j.scitotenv.2004.02.019.

    Article  CAS  Google Scholar 

  32. Samecka-Cymerman A, Kolon K, Kempers AJ. Taxus baccata as a bioindicator of urban environmental pollution. Pol J Environ Stud. 2011;20(4):1021–7.

    CAS  Google Scholar 

  33. Obrist D, Zielinska B, Perlinger JA. Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four US remote forests. Chemosphere. 2015;134:98–105. doi:10.1016/j.chemosphere.2015.03.087.

    Article  CAS  Google Scholar 

  34. Blasco M, Domeno C, Bentayeb K, Nerin C. Solid-phase extraction clean-up procedure for the analysis of PAHs in lichens. Int J Environ Anal Chem. 2007;87(12):833–46. doi:10.1080/03067310701381615.

    Article  CAS  Google Scholar 

  35. Albuquerque M, Coutinho M, Borrego C. Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Sci Total Environ. 2016;543:439–48. doi:10.1016/j.scitotenv.2015.11.064.

    Article  CAS  Google Scholar 

  36. Li X, Kong S, Yin Y, Li L, Yuan L, Li Q, et al. Asian Youth Games period in Nanjing. Atmos Res. 2013;174:85–96. doi:10.1016/j.atmosres.2016.01.010.

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Flemish Government in the framework of the Flemish investment support for heavy research equipment and FWO-funding (1.5.062.09.N.00) for analytical equipment support. We acknowledge Prof. Marie-Christine Van Labeke for the microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Walgraeve.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walgraeve, C., De Wispelaere, P., Van der Elst, F. et al. Development of an analytical method to determine oxy-PAHs and PAHs in Taxus baccata leaves. Anal Bioanal Chem 409, 335–347 (2017). https://doi.org/10.1007/s00216-016-0008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0008-9

Keywords

Navigation