Skip to main content
Log in

High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LWMM, Meropol NJ (2008). J Clin Oncol 26(19):3213. doi:10.1200/JCO.2007.15.8923. http://jco.ascopubs.org/content/26/19/3213

    Article  Google Scholar 

  2. Pang S, Han C, Kato M, Sternberg PW, Yang C (2012) Opt Lett 37(23):5018

    Article  Google Scholar 

  3. Greenbaum A, Zhang Y, Feizi A, Chung PL, Luo W, Kandukuri SR, Ozcan A (2014). Sci Transl Med 6(267):267ra175. doi:10.1126/scitranslmed.3009850

    Article  Google Scholar 

  4. Zheng G, Horstmeyer R, Yang C (2013). Nat. Photonics 7(9):739. doi:10.1038/nphoton.2013.187. http://www.nature.com/nphoton/journal/v7/n9/full/nphoton.2013.187.html

    Article  CAS  Google Scholar 

  5. Zheng G, Ou X, Yang C (2013). Biomed. Opt. Express 5(1):1. doi:10.1364/BOE.5.000001. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891323/

    Article  CAS  Google Scholar 

  6. Schonbrun E, Gorthi SS, Schaak D (2011). Lab on a Chip 12(2):268. doi:10.1039/C1LC20843H. http://pubs.rsc.org/en/content/articlelanding/2012/lc/c1lc20843h

    Article  Google Scholar 

  7. Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK, Sollier E, Fard AM, Hur SC, Adam J, Murray C, Wang C, Brackbill N, Carlo DD, Jalali B (2012). Proc Nat Acad Sci 109 (29):11630. doi:10.1073/pnas.1204718109. http://www.pnas.org/content/109/29/11630

    Article  CAS  Google Scholar 

  8. Zheng G, Lee SA, Yang S, Yang C (2010). Lab on a Chip 10 (22):3125. doi:10.1039/C0LC00213E. http://pubs.rsc.org/en/content/articlelanding/2010/lc/c0lc00213e

    Article  CAS  Google Scholar 

  9. Gorthi SS, Schaak D, Schonbrun E (2013). Opt Express 21(4):5164. doi:10.1364/OE.21.005164. http://www.opticsexpress.org/abstract.cfm?URI=oe-21-4-5164

    Article  CAS  Google Scholar 

  10. Zhu H, Ozcan A (2013). J Vis Exper 74. doi:10.3791/50451. http://www.jove.com/video/50451/wide-field-fluorescent-microscopy-fluorescent-imaging-flow-cytometry

  11. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011). Anal Chem 83(17):6641. doi:10.1021/ac201587a

    Article  CAS  Google Scholar 

  12. Gorthi SS, Schonbrun E (2012). Opt Lett 37(4):707. doi:10.1364/OL.37.000707. http://ol.osa.org/abstract.cfm?URI=ol-37-4-707

    Article  Google Scholar 

  13. Wu J, Li J, Chan RKY (2013). Opt Express 21(12):14474

    Article  CAS  Google Scholar 

  14. Pgard NC, Fleischer JW (2013). J Biomed Opt 18(4):040503. doi:10.1117/1.JBO.18.4.040503

    Article  Google Scholar 

  15. Jagannadh VK, Murthy RS, Srinivasan R, Gorthi SS (2015) J Biophoton. doi:10.1002/jbio.201500108

  16. Jagannadh VK, Srinivasan R, Gorthi SS (2015). AIP Adv 5(8):084902. doi:10.1063/1.4915133. http://scitation.aip.org/content/aip/journal/adva/5/8/10.1063/1.4915133

    Article  Google Scholar 

  17. Jagannadh V, Murthy R, Srinivasan R, Gorthi S (2015). J Lightwave Technol PP(99):1. doi:10.1109/JLT.2015.2412654

    Google Scholar 

  18. Xia Y, Whitesides GM (1998). Annual Rev Mater Sci 28(1):153. doi:10.1146/annurev.matsci.28.1.153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Abhishek Pathak for preparing blood samples for these experiments. The authors acknowledge funding from Biotechnology Ignition Grant (BIG) of BIRAC. BIG team also acknowledges the support of incubation center, Robert-Bosch Center for Cyber-Physical Systems (RBCCPS), IISc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Siva Gorthi.

Ethics declarations

Conflicts of interests

The authors declare no conflicts of Interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 8.72 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannadh, V.K., Bhat, B.P., Nirupa Julius, L.A. et al. High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry. Anal Bioanal Chem 408, 1909–1916 (2016). https://doi.org/10.1007/s00216-015-9301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9301-2

Keywords

Navigation