Skip to main content
Log in

Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Because noncovalent interface functionalization is frequently required in graphene-based devices, biomolecular self-assembly has begun to emerge as a route for controlling substrate electronic structure or binding specificity for soluble analytes. The remarkable diversity of structures that arise in biological self-assembly hints at the possibility of equally diverse and well-controlled surface chemistry at graphene interfaces. However, predicting and analyzing adsorbed monolayer structures at such interfaces raises substantial experimental and theoretical challenges. In contrast with the relatively well-developed monolayer chemistry and characterization methods applied at coinage metal surfaces, monolayers on graphene are both less robust and more structurally complex, levying more stringent requirements on characterization techniques. Theory presents opportunities to understand early binding events that lay the groundwork for full monolayer structure. However, predicting interactions between complex biomolecules, solvent, and substrate is necessitating a suite of new force fields and algorithms to assess likely binding configurations, solvent effects, and modulations to substrate electronic properties. This article briefly discusses emerging analytical and theoretical methods used to develop a rigorous chemical understanding of the self-assembly of peptide–graphene interfaces and prospects for future advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  CAS  Google Scholar 

  2. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–62.

    Article  CAS  Google Scholar 

  3. Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T. Properties of graphene: a theoretical perspective. Adv Phys. 2010;59:261–482.

    Article  CAS  Google Scholar 

  4. Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–22.

    Article  CAS  Google Scholar 

  5. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.

    Article  CAS  Google Scholar 

  6. Zhang YB, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature. 2005;438:201–4.

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005;438:197–200.

    Article  CAS  Google Scholar 

  8. Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25:15–34.

    Article  CAS  Google Scholar 

  9. Haar S, Ciesielski A, Clough J, Yang HF, Mazzaro R, Richard F, et al. A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: unraveling the role of the length of fatty acids. Small. 2015;11:1691–702.

    Article  CAS  Google Scholar 

  10. He HK, Gao C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater. 2010;22:5054–64.

    Article  CAS  Google Scholar 

  11. Li B, Klekachev AV, Cantoro M, Huyghebaert C, Stesmans A, Asselberghs I, et al. Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Nanoscale. 2013;5:9640–4.

    Article  CAS  Google Scholar 

  12. Alava T, Mann JA, Theodore C, Benitez JJ, Dichtel WR, Parpia JM, et al. Control of the graphene-protein interface is required to preserve adsorbed protein function. Anal Chem. 2013;85:2754–9.

    Article  CAS  Google Scholar 

  13. Zhao YL, Stoddart JF. Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res. 2009;42:1161–71.

    Article  CAS  Google Scholar 

  14. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al. Functionalization of Graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–214.

    Article  CAS  Google Scholar 

  15. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Chemical functionalization of graphene and its applications. Prog Mater Sci. 2012;57:1061–105.

    Article  CAS  Google Scholar 

  16. Sadeghi H, Algaragholy L, Pope T, Bailey S, Visontai D, Manrique D, et al. Graphene sculpturene nanopores for DNA nucleobase sensing. J Phys Chem B. 2014;118:6908–14.

    Article  CAS  Google Scholar 

  17. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 2010;22:1027–36.

    Article  CAS  Google Scholar 

  18. Khatayevich D, Page T, Gresswell C, Hayamizu Y, Grady W, Sarikaya M. Selective detection of target proteins by peptide-enabled graphene biosensor. Small. 2014;10:1505–13.

    Article  CAS  Google Scholar 

  19. Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013;25:168–86.

    Article  CAS  Google Scholar 

  20. Weaver CL, LaRosa JM, Luo X, Cui XT. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 2014;8:1834–43.

    Article  CAS  Google Scholar 

  21. Hung AH, Holbrook RJ, Rotz MW, Glasscock CJ, Mansukhani ND, MacRenaris KW, et al. Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. ACS Nano. 2014;8:10168–77.

    Article  CAS  Google Scholar 

  22. Hwang S-H, Kang D, Ruoff RS, Shin HS, Park Y-B. Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano. 2014;8:6739–47.

    Article  CAS  Google Scholar 

  23. Wang E, Desai MS, Heo K, Lee SW. Graphene-based materials functionalized with elastin-like polypeptides. Langmuir. 2014;30:2223–9.

    Article  CAS  Google Scholar 

  24. Wang J, Zhao X, Li J, Kuang X, Fan Y, Wei G, et al. Electrostatic assembly of peptide nanofiber-biomimetic silver nanowires onto graphene for electrochemical sensors. ACS Macro Lett. 2014;3:529–33.

    Article  CAS  Google Scholar 

  25. Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU, et al. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Funct Mater. 2015;25:5472–8.

    Article  CAS  Google Scholar 

  26. Lee H, Tran M-H, Jeong HK, Han J, Jang S-H, Lee C. Nonspecific cleavage of proteins using graphene oxide. Anal Biochem. 2014;451:31–4.

    Article  CAS  Google Scholar 

  27. Han TH, Lee WJ, Lee DH, Kim JE, Choi E-Y, Kim SO. Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater. 2010;22:2060–4.

    Article  CAS  Google Scholar 

  28. Alava T, Mann JA, Théodore C, Benitez JJ, Dichtel WR, Parpia JM, et al. Control of the graphene–protein interface is required to preserve adsorbed protein function. Anal Chem. 2013;85:2754–9.

    Article  CAS  Google Scholar 

  29. Kodali VK, Scrimgeour J, Kim S, Hankinson JH, Carroll KM, de Heer WA, et al. Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir. 2011;27:863–5.

    Article  CAS  Google Scholar 

  30. Dong XC, Shi YM, Huang W, Chen P, Li LJ. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater. 2010;22:1649–53.

    Article  CAS  Google Scholar 

  31. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed. 2010;49:2114–38.

    Article  CAS  Google Scholar 

  32. Huang WT, Luo HQ, Li NB. Boolean logic tree of graphene-based chemical system for molecular computation and intelligent molecular search query. Anal Chem. 2014;86:4494–500.

    Article  CAS  Google Scholar 

  33. Pavlidis IV, Patila M, Bornscheuer UT, Gournis D, Stamatis H. Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol. 2014;32:312–20.

    Article  CAS  Google Scholar 

  34. MacLeod JM, Rosei F. Molecular self-assembly on graphene. Small. 2014;10:1038–49.

    Article  CAS  Google Scholar 

  35. Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–90.

    Article  CAS  Google Scholar 

  36. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KN, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–214.

    Article  CAS  Google Scholar 

  37. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26:4637–48.

    Article  CAS  Google Scholar 

  38. Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, et al. Graphene-based wireless bacteria detection on tooth enamel. Nat Commun. 2012;3:763.

    Article  Google Scholar 

  39. Chen LH, Li YH, Li JX, Xu XQ, Lai R, Zou QM. An antimicrobial peptide with antimicrobial activity against Helicobacter pylori. Peptides. 2007;28:1527–31.

    Article  CAS  Google Scholar 

  40. Solnick JV, Hansen LM, Canfield DR, Parsonnet J. Determination of the infectious dose of helicobacter pylori during primary and secondary infection in rhesus monkeys (Macaca mulatta). Infect Immun. 2001;69:6887–92.

    Article  CAS  Google Scholar 

  41. Zhang M, Yin B-C, Wang X-F, Ye B-C. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun. 2011;47:2399–401.

    Article  CAS  Google Scholar 

  42. Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–12.

    Article  Google Scholar 

  43. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–69.

    Article  CAS  Google Scholar 

  44. Claridge SA, Schwartz JJ, Weiss PS. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano. 2011;5:693–729.

    Article  CAS  Google Scholar 

  45. Claridge SA, Liao W-S, Thomas JC, Zhao Y, Cao HH, Cheunkar S, et al. From the bottom up: dimensional control and characterization in molecular monolayers. Chem Soc Rev. 2013;42:2725–45.

    Article  CAS  Google Scholar 

  46. Duevel RV, Corn RM. Amide and ester surface attachment reactions for alkanethiol monolayers at gold surfaces as studied by polarization modulation fourier transform infrared spectroscopy. Anal Chem. 1992;64:337–42.

    Article  CAS  Google Scholar 

  47. Duwez AS. Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. J Electron Spectrosc Relat Phenom. 2004;134:97–138.

    Article  CAS  Google Scholar 

  48. Riposan A, Liu GY. Significance of local density of states in the scanning tunneling microscopy imaging of alkanethiol self-assembled monolayers. J Phys Chem B. 2006;110:23926–37.

    Article  CAS  Google Scholar 

  49. Klein H, Blanc W, Pierrisnard R, Fauquet C, Dumas P. Self-assembled monolayers of decanethiol on Au(111)/mica. Eur Phys J B. 2000;14:371–6.

    Article  CAS  Google Scholar 

  50. Mao X, Guo Y, Luo Y, Niu L, Liu L, Ma X, et al. Sequence effects on peptide assembly characteristics observed by using scanning tunneling microscopy. J Am Chem Soc. 2013;135:2181–7.

    Article  CAS  Google Scholar 

  51. Sang L, Mudalige A, Sigdel AK, Giordano AJ, Marder SR, Berry JJ, et al. PM-IRRAS determination of molecular orientation of phosphonic acid self-assembled monolayers on indium zinc oxide. Langmuir. 2015;31:5603–13.

    Article  CAS  Google Scholar 

  52. Aizenberg J. Crystallization in patterns: a bio-inspired approach. Adv Mater. 2004;16:1295–302.

    Article  CAS  Google Scholar 

  53. Weiss PS. Functional molecules and assemblies in controlled environments: formation and measurements. Acc Chem Res. 2008;41:1772–81.

    Article  CAS  Google Scholar 

  54. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401.

    Article  CAS  Google Scholar 

  55. Lerner MB, Matsunaga F, Han GH, Hong SJ, Xi J, Crook A, et al. Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor. Nano Lett. 2014;14:2709–14.

    Article  CAS  Google Scholar 

  56. Skoog DA, Holler FJ, Crouch SR. Instrumental analysis. Stamford: Cengage; 2007.

    Google Scholar 

  57. Batson PE, Dellby N, Krivanek OL. Sub-angstrom resolution using aberration corrected electron optics. Nature. 2002;418:617–20.

    Article  CAS  Google Scholar 

  58. Li C, Adamcik J, Mezzenga R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol. 2012;7:421–7.

    Article  CAS  Google Scholar 

  59. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, et al. Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano. 2009;3:2547–56.

    Article  CAS  Google Scholar 

  60. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 2012;336:61–4.

    Article  CAS  Google Scholar 

  61. Park J, Park H, Ercius P, Pegoraro AF, Xu C, Kim JW, et al. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 2015;15:4737–44.

    Article  CAS  Google Scholar 

  62. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature. 2010;464:571–4.

    Article  CAS  Google Scholar 

  63. Bang JJ, Russell SR, Rupp KK, Claridge SA. Multimodal scanning probe imaging: nanoscale chemical analysis from biology to renewable energy. Anal Methods. 2015;7:7106–27.

    Article  CAS  Google Scholar 

  64. Cui Y, Kim SN, Jones SE, Wissler LL, Naik RR, McAlpine MC. Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett. 2010;10:4559–65.

    Article  CAS  Google Scholar 

  65. Qing G, Zhao S, Xiong Y, Lv Z, Jiang F, Liu Y, et al. Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation. J Am Chem Soc. 2014;136:10736–42.

    Article  CAS  Google Scholar 

  66. Svaldo-Lanero T, Penco A, Prato M, Toccafondi C, Canepa M, Rolandi R, et al. Aligning amyloid-like fibrils on nanopatterned graphite. Anal Bioanal Chem. 2012;2:75–82.

  67. Mao X-B, Wang C-X, Wu X-K, Ma X-J, Liu L, Zhang L, et al. Beta structure motifs of islet amyloid polypeptides identified through surface-mediated assemblies. Proc Natl Acad Sci U S A. 2011;108:19605–10.

    Article  CAS  Google Scholar 

  68. Claridge SA, Thomas JC, Silverman MA, Schwartz JJ, Yang Y, Wang C, et al. Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy. J Am Chem Soc. 2013;135:18528–35.

    Article  CAS  Google Scholar 

  69. Kowalewski T, Holtzman DM. In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci U S A. 1999;96:3688–93.

    Article  CAS  Google Scholar 

  70. Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surf Sci Rep. 1999;34:1–104.

    Article  CAS  Google Scholar 

  71. Kim SS, Kuang Z, Ngo YH, Farmer BL, Naik RR. Biotic-abiotic interactions: factors that influence peptide-graphene interactions. ACS Appl Mater Interfaces. 2015;7:20447–53.

    Article  CAS  Google Scholar 

  72. Rodahl M, Hook F, Krozer A, Brzezinski P, Kasemo B. Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum. 1995;66:3924–30.

    Article  CAS  Google Scholar 

  73. Hook F, Rodahl M, Brzezinski P, Kasemo B. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir. 1998;14:729–34.

    Article  Google Scholar 

  74. Somorjai GA. Modern surface science and surface technologies: an introduction. Chem Rev. 1996;96:1223–35.

    Article  CAS  Google Scholar 

  75. Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364.

    Article  CAS  Google Scholar 

  76. Camden AN, Barr SA, Berry RJ. Simulations of peptide-graphene interactions in explicit water. J Phys Chem B. 2013;117:10691–7.

    Article  CAS  Google Scholar 

  77. Hughes ZE, Walsh TR. What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B. 2015;3:3211–21.

    Article  CAS  Google Scholar 

  78. Akdim B, Pachter R, Kim SS, Naik RR, Walsh TR, Trohalaki S, et al. Electronic properties of a graphene device with peptide adsorption: insight from simulation. ACS Appl Mater Interfaces. 2013;5:7470–7.

    Article  CAS  Google Scholar 

  79. Beck DAC, Alonso DOV, Inoyama D, Daggett V. The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins. Proc Natl Acad Sci U S A. 2008;105:12259–64.

    Article  CAS  Google Scholar 

  80. Aeon Technology. Direct force field 7.0. San Diego: Aeon Technology; 2011.

    Google Scholar 

  81. Tomásio SM, Walsh TR. Modeling the binding affinity of peptides for graphitic surfaces. influences of aromatic content and interfacial shape. J Phys Chem C. 2009;113:8778–85.

    Article  Google Scholar 

  82. Hukushima K, Takayama H, Nemoto K. Application of an extended ensemble method to spin glasses. Intl J Mod Phys C. 1996;7:337–44.

    Article  Google Scholar 

  83. Swendsen RH, Wang JS. Replica Monte-Carlo simulation of spin-glasses. Phys Rev Lett. 1986;57:2607–9.

    Article  Google Scholar 

  84. Liu P, Kim B, Friesner RA, Berne BJ. Replica Exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci U S A. 2005;102:13749–54.

    Article  CAS  Google Scholar 

  85. Kim SN, Kuang Z, Slocik JM, Jones SE, Cui Y, Farmer BL, et al. Preferential binding of peptides to graphene edges and planes. J Am Chem Soc. 2011;133:14480–3.

    Article  CAS  Google Scholar 

  86. Pandey RB, Kuang Z, Farmer BL, Kim SS, Naik RR. Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approach. Soft Matter. 2012;8:9101–9.

    Article  CAS  Google Scholar 

  87. Pandey RB, Heinz H, Feng J, Farmer BL, Slocik JM, Drummy LF, et al. Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation. Phys Chem Chem Phys. 2009;11:1989–2001.

    Article  CAS  Google Scholar 

  88. Pandey RB, Heinz H, Farmer BL, Drummy LF, Jones SE, Vaia RA, et al. Layer of clay platelets in a peptide matrix: binding, encapsulation, and morphology. J Polym Sci B. 2010;48:2566–74.

    Article  CAS  Google Scholar 

  89. Mali KS, Greenwood J, Adisoejoso J, Phillipson R, De Feyter S. Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale. 2015;7:1566–85.

    Article  CAS  Google Scholar 

  90. Ponder JW, Ren P, Pappu RV, Hart RK, Hodgson ME, Cistola DP et al. TINKER 5.1. 2016.

  91. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys Rev B. 2002;65:17.

    Article  Google Scholar 

  92. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B. 1998;58:7260–8.

    Article  CAS  Google Scholar 

  93. Li Z, Wang Y, Kozbial A, Shenoy G, Zhou F, McGinley R, et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat Mater. 2013;12:925–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.A.C. acknowledges support through an American Chemical Society Petroleum Research Fund Doctoral New Investigator Award, PRF# 54763-DNI5. S.R.R. is supported through a W. Brooks Fortune Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley A. Claridge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, S.R., Claridge, S.A. Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials. Anal Bioanal Chem 408, 2649–2658 (2016). https://doi.org/10.1007/s00216-015-9262-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9262-5

Keywords

Navigation