Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 5, pp 1497–1506 | Cite as

Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray

  • Liu Shi
  • Thomas Gehin
  • Yann Chevolot
  • Eliane Souteyrand
  • Alain Mangé
  • Jérôme Solassol
  • Emmanuelle LaurenceauEmail author
Research Paper

Abstract

Heat shock proteins (HSPs) are over-expressed in a wide range of human cancers. It results in the stimulation of the immune system and consequently in elevated concentration of anti-HSP autoantibodies. Elevated anti-HSP autoantibodies were found in breast cancer patients, and they are associated with tumor metastasis. Therefore, screening these autoantibodies could be of diagnostic and prognostic values. Protein microarrays have already demonstrated their great potential as a diagnostic tool. However, protein diversity requires optimization of the microarray fabrication to achieve high sensitivity and specificity. In this study, seven HSPs were immobilized on six different surface chemistries. After evaluation and optimization with purified antibodies of the six surface chemistries, two surfaces were selected to detect anti-HSP autoantibodies in breast cancer sera. Multiplex detection of anti-HSP autoantibodies allowed discrimination of breast cancer patients (50) from healthy controls (26) with a sensitivity of 86 % and a specificity of 100 %.

Graphical abstract

Receiver operating characteristic (ROC) curve analysis for the discrimination between breast cancer patients and healthy controls: detection of individual autoantibody on optimal surface chemistry (COOH or chitosan surface) and combination (black line) of the detection of 7 autoantibodies

Keywords

Breast cancer Autoantibodies Heat shock proteins Protein microarray 

Notes

Acknowledgments

China Scholarship Council is acknowledged for offering a Ph.D. fellowship to Liu Shi. The CNANO Rhône-Alpes and BQR Ecole Centrale de Lyon are acknowledged for financial support. NanoLyon is acknowledged for technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

All human samples were prospectively collected between 2005 and 2007 at the CRLC Val d’Aurelle Cancer Institute (Montpellier, France) at the time of cancer diagnosis after obtaining written informed consent. This study was approved by the Montpellier University Hospital human research committee and the INSERM review board (RBM-03-63).

Supplementary material

216_2015_9257_MOESM1_ESM.pdf (252 kb)
ESM 1 (PDF 252 kb)

References

  1. 1.
    Radpour R, Barekati Z, Kohler C, Holzgreve W, Zhong XY. New trends in molecular biomarker discovery for breast cancer. Genet Test Mol Biomarkers. 2009;13:565–71.CrossRefGoogle Scholar
  2. 2.
    Brooks M. Breast cancer screening and biomarkers. Methods Mol Biol. 2009;472:307–21.CrossRefGoogle Scholar
  3. 3.
    Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009;276:6880–904.CrossRefGoogle Scholar
  4. 4.
    Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, et al. The case for early detection. Nat Rev Cancer. 2003;3:243–52.CrossRefGoogle Scholar
  5. 5.
    Heo CK, Bahk YY, Cho EW. Tumor-associated autoantibodies as diagnostic and prognostic biomarkers. BMB Rep. 2012;45:677–85.CrossRefGoogle Scholar
  6. 6.
    Chapman C, Murray A, Chakrabarti J, Thorpe A, Woolston C, Sahin U, et al. Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann Oncol. 2007;18:868–73.CrossRefGoogle Scholar
  7. 7.
    Misek DE, Kim EH. Protein biomarkers for the early detection of breast cancer. Int J Proteomics. 2011;2011:343582.Google Scholar
  8. 8.
    Desmetz C, Mange A, Maudelonde T, Solassol J. Autoantibody signatures: progress and perspectives for early cancer detection. J Cell Mol Med. 2011;15:2013–24.CrossRefGoogle Scholar
  9. 9.
    Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta. 2011;1816:89–104.Google Scholar
  10. 10.
    Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103.CrossRefGoogle Scholar
  11. 11.
    Conroy SE, Sasieni PD, Fentiman I, Latchman DS. Autoantibodies to the 90kDa heat shock protein and poor survival in breast cancer patients. Eur J Cancer. 1998;34:942–3.Google Scholar
  12. 12.
    Conroy SE, Sasieni PD, Amin V, Wang DY, Smith P, Fentiman IS, et al. Antibodies to heat-shock protein 27 are associated with improved survival in patients with breast cancer. Br J Cancer. 1998;77:1875–9.CrossRefGoogle Scholar
  13. 13.
    Conroy SE, Gibson SL, Brunstrom G, Isenberg D, Luqmani Y, Latchman DS. Autoantibodies to 90 kD heat-shock protein in sera of breast cancer patients. Lancet. 1995;345:126.CrossRefGoogle Scholar
  14. 14.
    Hamrita B, Chahed K, Kabbage M, Guillier CL, Trimeche M, Chaieb A, et al. Identification of tumor antigens that elicit a humoral immune response in breast cancer patients’ sera by serological proteome analysis (SERPA). Clin Chim Acta. 2008;393:95–102.CrossRefGoogle Scholar
  15. 15.
    Desmetz C, Bibeau F, Boissiere F, Bellet V, Rouanet P, Maudelonde T, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in early stage breast cancer and ductal carcinoma in situ. J Proteome Res. 2008;7:3830–7.CrossRefGoogle Scholar
  16. 16.
    Luo LY, Herrera I, Soosaipillai A, Diamandis EP. Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library. Br J Cancer. 2002;87:339–43.CrossRefGoogle Scholar
  17. 17.
    Desmetz C, Bascoul-Mollevi C, Rochaix P, Lamy PJ, Kramar A, Rouanet P, et al. Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin Cancer Res. 2009;15:4733–41.CrossRefGoogle Scholar
  18. 18.
    Sutandy FX, Qian J, Chen CS, Zhu H. Overview of protein microarrays. Curr Protoc Protein Sci. 2013, Chapter 27, Unit 27.1. doi: 10.1002/0471140864.ps2701s72.
  19. 19.
    Cretich M, Damin F, Chiari M. Protein microarray technology: how far off is routine diagnostics? Analyst. 2014;139:528–42.CrossRefGoogle Scholar
  20. 20.
    Hu S, Xie Z, Qian J, Blackshaw S, Zhu H. Functional protein microarray technology. Wiley Interdiscip Rev Syst Biol Med. 2012;3:255–68.CrossRefGoogle Scholar
  21. 21.
    Balboni I, Limb C, Tenenbaum JD, Utz PJ. Evaluation of microarray surfaces and arraying parameters for autoantibody profiling. Proteomics. 2008;8:3443–9.CrossRefGoogle Scholar
  22. 22.
    Seurynck-Servoss SL, Baird CL, Rodland KD, Zangar RC. Surface chemistries for antibody microarrays. Front Biosci. 2007;12:3956–64.CrossRefGoogle Scholar
  23. 23.
    Kusnezow W, Hoheisel JD. Solid supports for microarray immunoassays. J Mol Recognit. 2003;16:165–76.CrossRefGoogle Scholar
  24. 24.
    Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol. 2003;7:55–63.CrossRefGoogle Scholar
  25. 25.
    Cretich M, Damin F, Pirri G, Chiari M. Protein and peptide arrays: recent trends and new directions. Biomol Eng. 2006;23:77–88.CrossRefGoogle Scholar
  26. 26.
    Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl. 2008;47:9618–47.CrossRefGoogle Scholar
  27. 27.
    Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–89.CrossRefGoogle Scholar
  28. 28.
    Yang Z, Chevolot Y, Ataman-Önal Y, Choquet-Kastylevsky G, Souteyrand E, Laurenceau E. Cancer biomarkers detection using 3D microstructured protein chip: implementation of customized multiplex immunoassay. Sensors Actuators B Chem. 2012;175:22–8.CrossRefGoogle Scholar
  29. 29.
    Yang Z, Chevolot Y, Gehin T, Solassol J, Mange A, Souteyrand E, et al. Improvement of protein immobilization for the elaboration of tumor-associated antigen microarrays: application to the sensitive and specific detection of tumor markers from breast cancer sera. Biosens Bioelectron. 2013;40:385–92.CrossRefGoogle Scholar
  30. 30.
    Kramar A, Faraggi D, Fortune A, Reiser B. mROC: a computer program for combining tumour markers in predicting disease states. Comput Methods Prog Biomed. 2001;66:199–207.CrossRefGoogle Scholar
  31. 31.
    Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–91.CrossRefGoogle Scholar
  32. 32.
    Ellis RJ, Hartl FU. Principles of protein folding in the cellular environment. Curr Opin Struct Biol. 1999;9:102–10.CrossRefGoogle Scholar
  33. 33.
    Yang Z, Chevolot Y, Géhin T, Dugas V, Xanthopoulos N, Laporte V, et al. Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer. Langmuir. 2013;29:1498–509.CrossRefGoogle Scholar
  34. 34.
    Kim J, Shin D, Chung W, Jang K, Lee K, Kim Y, et al. Effects of polymer grafting on a glass surface for protein chip applications. Colloids Surf B: Biointerfaces. 2004;33:67–75.CrossRefGoogle Scholar
  35. 35.
    El Khoury G, Laurenceau E, Chevolot Y, Mérieux Y, Desbos A, Fabien N, et al. Development of miniaturized immunoassay: influence of surface chemistry and comparison with enzyme-linked immunosorbent assay and Western blot. Anal Biochem. 2010;400:10–8.CrossRefGoogle Scholar
  36. 36.
    Seurynck-Servoss SL, White AM, Baird CL, Rodland KD, Zangar RC. Evaluation of surface chemistries for antibody microarrays. Anal Biochem. 2007;371:105–15.CrossRefGoogle Scholar
  37. 37.
    Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel JD. Antibody microarrays: an evaluation of production parameters. Proteomics. 2003;3:254–64.CrossRefGoogle Scholar
  38. 38.
    Fan J, Upadhye S, Worster A. Understanding receiver operating characteristic (ROC) curves. Can J Emerg Med. 2006;8:19–20.Google Scholar
  39. 39.
    He Y, Wu Y, Mou Z, Li W, Zou L, Fu T, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics Clin Appl. 2007;1:336–42.CrossRefGoogle Scholar
  40. 40.
    Anderson KS, Sibani S, Wallstrom G, Qiu J, Mendoza EA, Raphael J, et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J Proteome Res. 2011;10:85–96.CrossRefGoogle Scholar
  41. 41.
    Liu W, Wang P, Li Z, Xu W, Dai L, Wang K, et al. Evaluation of tumour-associated antigen (TAA) miniarray in immunodiagnosis of colon cancer. Scand J Immunol. 2009;69:57–63.CrossRefGoogle Scholar
  42. 42.
    Li J, Wang LJ, Ying X, Han SX, Bai E, Zhang Y, et al. Immunodiagnostic value of combined detection of autoantibodies to tumor-associated antigens as biomarkers in pancreatic cancer. Scand J Immunol. 2012;75:342–9.CrossRefGoogle Scholar
  43. 43.
    Dai L, Ren P, Liu M, Imai H, Tan EM, Zhang JY. Using immunomic approach to enhance tumor-associated autoantibody detection in diagnosis of hepatocellular carcinoma. Clin Immunol. 2014;152:127–39.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Liu Shi
    • 1
  • Thomas Gehin
    • 1
  • Yann Chevolot
    • 1
  • Eliane Souteyrand
    • 1
  • Alain Mangé
    • 2
  • Jérôme Solassol
    • 2
  • Emmanuelle Laurenceau
    • 1
    Email author
  1. 1.Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de LyonUniversité de LyonEcullyFrance
  2. 2.Institut de Recherche en Cancérologie de Montpellier INSERM U1194MontpellierFrance

Personalised recommendations