Analytical and Bioanalytical Chemistry

, Volume 408, Issue 11, pp 2827–2837 | Cite as

The future point-of-care detection of disease and its data capture and handling

  • Natalia Lopez-Barbosa
  • Jorge D. Gamarra
  • Johann F. Osma
Part of the following topical collections:
  1. Young Investigators in Analytical and Bioanalytical Science


Point-of-care detection is a widely studied area that attracts effort and interest from a large number of fields and companies. However, there is also increased interest from the general public in this type of device, which has driven enormous changes in the design and conception of these developments and the way data is handled. Therefore, future point-of-care detection has to include communication with front-end technology, such as smartphones and networks, automation of manufacture, and the incorporation of concepts like the Internet of Things (IoT) and cloud computing. Three key examples, based on different sensing technology, are analyzed in detail on the basis of these items to highlight a route for the future design and development of point-of-care detection devices and their data capture and handling.

Graphical Abstract

The future Point-of-care device key elements: recognition element, end user device and integration to other technological platforms and manufacture processes


Biochips High - throughput screening Biosensors Biotechnological products Clinical Biomedical analysis Electrochemical sensors Mass sensitive sensors Process analysis 


Compliance with ethical standards

Conflict of interests

In this work, there are no potential conflicts between or related to any author.


  1. 1.
    Jung W, Han J, Choi J-W, Ahn CH. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng. 2014;132:46–57.CrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention. Drug resistance. 2015. Accessed 24 Sep 2015.
  3. 3.
    Brendish NJ, Schiff HF, Clark TW. Point-of-care testing for respiratory viruses in adults: the current landscape and future potential. J Infect. 2015;71:501–10.CrossRefGoogle Scholar
  4. 4.
    Rusling JF, Kumar CV, Gutkind JS, Patel V. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 2010;135:2496–511.CrossRefGoogle Scholar
  5. 5.
    Lee W-B, Chen Y-H, Lin H-I, Shiesh S-C, Lee GB. An integrated microfluidic system for fast, automatic detection of C-reactive protein. Sens Actuators B Chem. 2011;157:710–21.CrossRefGoogle Scholar
  6. 6.
    Nichols JH. Management of point-of-care testing. Blood Gas News. 1999;8:4–14.Google Scholar
  7. 7.
    Snider CL, Dick EJ, McGlasson DL, Robbins MC, Sholund RL, Bommineni YR, et al. Evaluation of four hematology and a chemistry portable benchtop analyzers using nonhuman primate blood. J Med Primatol. 2009;38:390–6.CrossRefGoogle Scholar
  8. 8.
    Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13:1282–8.CrossRefGoogle Scholar
  9. 9.
    Cheung K, Gawad S, Renaud P. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A. 2005;65:124–32.CrossRefGoogle Scholar
  10. 10.
    Glynn MT, Kinahan DJ, Ducree J. CD4 counting technologies for HIV therapy monitoring in resource-poor settings–state-of-the-art and emerging microtechnologies. Lab Chip. 2013;13:2731–48.CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, et al. A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci. 2006;103:19272–7.CrossRefGoogle Scholar
  13. 13.
    Oblath EA, Henley WH, Alarie JP, Ramsey JM. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip. 2013;13:1325–32.CrossRefGoogle Scholar
  14. 14.
    Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108:814–25.CrossRefGoogle Scholar
  15. 15.
    Nagraj N. Development of functional DNA-based sensors and investigations into their mechanism. PhD thesis, Urbana: University of Illinois; 2010.Google Scholar
  16. 16.
    Gao L, Lian C, Zhou Y, Yan L, Li Q, Zhang C, et al. Graphene oxide–DNA based sensors. Biosens Bioelectron. 2014;60:22–9.CrossRefGoogle Scholar
  17. 17.
    Vachali PP, Li B, Bartschi A, Bernstein PS. Surface plasmon resonance (SPR)-based biosensor technology for the quantitative characterization of protein–carotenoid interactions. Arch Biochem Biophys. 2015;572:66–72.CrossRefGoogle Scholar
  18. 18.
    Skottrup PD, Nicolaisen M, Justesen AF. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron. 2008;24:339–48.CrossRefGoogle Scholar
  19. 19.
    Li H, Bai X, Wang N, Chen X, Li J, Zhang Z, et al. Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin. Talanta. 2015. doi: 10.1016/j.talanta.2015.06.034.Google Scholar
  20. 20.
    Hun X, Xu Y, Xie G, Luo X. Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters. Sens Actuators B Chem. 2015;209:596–601.CrossRefGoogle Scholar
  21. 21.
    Putzbach WR, Ronkainen NJ. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors. 2013;13:4811–40.CrossRefGoogle Scholar
  22. 22.
    Ghodselahi T, Aghababaie N, Mobasheri H, Zand Salimi K, Akbarzadeh Pasha M, Vesaghi MA. Fabrication and characterization and biosensor application of gold nanoparticles on the carbon nanotubes. Appl Surf Sci. 2015;355:1175–9.CrossRefGoogle Scholar
  23. 23.
    Devasenathipathy R, Mani V, Chen S-M, Huang S-T, Huang T-T, Lin C-M, et al. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol. 2015;78:40–5.CrossRefGoogle Scholar
  24. 24.
    Chécot F, Rodríguez-Hernández J, Gnanou Y, Lecommandoux S. pH-responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers. Biomol Eng. 2007;24:81–5.CrossRefGoogle Scholar
  25. 25.
    Oaew S, Charlermroj R, Pattarakankul T, Karoonuthaisiri N. Gold nanoparticles/horseradish peroxidase encapsulated polyelectrolyte nanocapsule for signal amplification in Listeria monocytogenes detection. Biosens Bioelectron. 2012;34:238–43.CrossRefGoogle Scholar
  26. 26.
    Acquah C, Danquah MK, Yon JLS, Sidhu A, Ongkudon CM. A review on immobilised aptamers for high throughput biomolecular detection and screening. Anal Chim Acta. 2015;888:10–8.CrossRefGoogle Scholar
  27. 27.
    Famulok M, Mayer G. Aptamer modules as sensors and detectors. Acc Chem Res. 2011;44:1349–58.CrossRefGoogle Scholar
  28. 28.
    Svobodova M, Mairal T, Nadal P, Bermudo MC, O’Sullivan CK. Ultrasensitive aptamer based detection of β-conglutin food allergen. Food Chem. 2014;165:419–23.CrossRefGoogle Scholar
  29. 29.
    OptiEnz Sensors. Frequently asked questions. 2014. Accessed 24 Sept 2015.
  30. 30.
    Kumar CSSR. Carbon nanotube-based sensor. In: Nanomaterials for biosensors. Wiley-VCH; 2007. pp 27–89.Google Scholar
  31. 31.
    Wang S, Li L, Jin H, Yang T, Bao W, Huang S, et al. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens Bioelectron. 2013;41:205–10.CrossRefGoogle Scholar
  32. 32.
    McGrath MJS, Scanaill CN. Sensing and sensor fundamentals. In: Sensor technologies: healthcare, wellness and environmental applications. New York: Apress; 2013. pp 15–50.Google Scholar
  33. 33.
    Clarke SF, Foster JR. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br J Biomed Sci. 2012;69:83–93.Google Scholar
  34. 34.
    King EJ, Garner RJ. The colorimetric determination of glucose. J Clin Pathol. 1947;1:30–3.CrossRefGoogle Scholar
  35. 35.
    Aggidis AGA, Newman JD, Aggidis GA. Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosens Bioelectron. 2015;74:243–62.CrossRefGoogle Scholar
  36. 36.
    Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE. Electrochemical sensors and biosensors. Anal Chem. 2012;84:685–707.CrossRefGoogle Scholar
  37. 37.
    Turner APF. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42:3184–96.CrossRefGoogle Scholar
  38. 38.
    Diagnostics R. Accu-Chek Aviva Combo. Advanced owners booklet. Mannheim: Roche Diagnostics; 2009.Google Scholar
  39. 39.
    LifeScan. OneTouch VerioSync blood glucose monitoring system owners booklet instructions for use. Milpitas: LifeScan; 2012.Google Scholar
  40. 40.
    LifeScan. OneTouch Reveal app owners booklet. Zug: LifeScan; 2012.Google Scholar
  41. 41.
    Bayer. Contour Next USB. 2014. Accessed 24 Sept 2015.
  42. 42.
    FDA. Public health notification: potentially fatal errors with GDH-PQQ glucose monitoring technology. Silver Spring: FDA; 2013.Google Scholar
  43. 43.
    Pelikan Sun. Pelikan Sun technology animation. Youtube. 2009.Google Scholar
  44. 44.
    Xu Z. Optical spectroscopy device for non-invasive blood glucose detection and associated method of use. US Patent US20100252721. 2013.Google Scholar
  45. 45.
    Nichols JH, Christenson RH, Clarke W, Gronowski A, Hammett-Stabler CA, Jacobs E, et al. Executive summary. The National Academy of Clinical Biochemistry laboratory medicine practice guideline: evidence-based practice for point-of-care testing. Clin Chim Acta. 2007;379:14–28.CrossRefGoogle Scholar
  46. 46.
    Oliver P, Buno A, Alvarez-Sala R, Fernandez-Calle P, Alcaide MJ, Casitas R, et al. Clinical, operational and economic outcomes of point-of-care blood gas analysis in COPD patients. Clin Biochem. 2015;48:412–8.CrossRefGoogle Scholar
  47. 47.
    Abbott Point of Care. i-STAT Handheld. 2015. Accessed 11 Nov 2015.
  48. 48.
    Abbott Point of Care. The i-STAT 1 Wireless System: supporting a culture of continuous improvement. Princeton: Cheyenne Regional Medical Center, Abbott Point of Care; 2013.Google Scholar
  49. 49.
    Veldhoen ES, de Vooght KMK, Slieker MG, Versluys AB, Turner NM. Analysis of bloodgas, electrolytes and glucose from intraosseous samples using an i-STAT® point-of-care analyser. Resuscitation. 2014;85:359–63.CrossRefGoogle Scholar
  50. 50.
    Epocal. Epoc blood analysis. 2011. Accessed 24 Sept 2015.
  51. 51.
    Lee-Lewandrowski E, Nichols J, Van Cott E, Grisson R, Louissaint A, Benzer T, et al. Implementation of a rapid whole blood D-dimer test in the emergency department of an urban academic medical center: impact on ED length of stay and ancillary test utilization. Am J Clin Pathol. 2009;132:326–31.CrossRefGoogle Scholar
  52. 52.
    D'Orazio P. Blood gas and PH analysis and related measurements: approved guideline. Wayne: Clinical and Laboratory Standards Institute; 2009.Google Scholar
  53. 53.
    Winkelman JW, Wybenga DR. Quantification of medical and operational factors determining central versus satellite laboratory testing of blood gases. Am J Clin Pathol. 1994;102:7–10.CrossRefGoogle Scholar
  54. 54.
    Fleisher M, Schwartz MK. Automated approaches to rapid-response testing: a comparative evaluation of point-of-care and centralized laboratory testing. Am J Clin Pathol. 1995;104:S18–25.Google Scholar
  55. 55.
    Dunne EF, Park IU. HPV and HPV-associated diseases. Infect Dis Clin N Am. 2013;27:765–78.CrossRefGoogle Scholar
  56. 56.
    Jemal A, Simard EP, Dorell C, Noone A-M, Markowitz LE, Kohler B, et al. Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels. JNCI J Natl Cancer Inst. 2013;105:175–201.CrossRefGoogle Scholar
  57. 57.
    Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010;117:5–10.CrossRefGoogle Scholar
  58. 58.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefGoogle Scholar
  59. 59.
    Kornya L, Cseh I, Deak J, Bak M, Fulop V. The diagnostics and prevalence of genital human papillomavirus (HPV) infection in Hungary. Eur J Obstetr Gynecol Reprod Biol. 2002;100:231–6.CrossRefGoogle Scholar
  60. 60.
    Akhila B. Evaluation of an ELISA for p16INK4a as a screening test for cervical cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:3008–17.CrossRefGoogle Scholar
  61. 61.
    Kim HH, Jeon HJ, Cho HK, Cheong JH, Moon HS, Go JS. Highly sensitive microcantilever biosensors with enhanced sensitivity for detection of human papilloma virus infection. Sens Actuators B Chem. 2015;221:1372–83.CrossRefGoogle Scholar
  62. 62.
    Civit L, Fragoso A, O'Sullivan CK. Electrochemical biosensor for the multiplexed detection of human papillomavirus genes. Biosens Bioelectron. 2010;26:1684–7.CrossRefGoogle Scholar
  63. 63.
    Tran LD, Nguyen DT, Nguyen BH, Do QP, Le Nguyen H. Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: application for human papilloma virus. Talanta. 2011;85:1560–5.CrossRefGoogle Scholar
  64. 64.
    Wang Y, Chen M, Zhang L, Ding Y, Luo Y, Xu Q, et al. Rapid detection of human papilloma virus using a novel leaky surface acoustic wave peptide nucleic acid biosensor. Biosens Bioelectron. 2009;24:3455–60.CrossRefGoogle Scholar
  65. 65.
    Urrego LF, Lopez DI, Ramirez KA, Ramirez C, Osma JF. Biomicrosystem design and fabrication for the human papilloma virus 16 detection. Sens Actuators B Chem. 2015;207(Part A):97–104.CrossRefGoogle Scholar
  66. 66.
    Fernandez D. Sistema de adquisición y visualización de datos para un bio-sensor de VPH16. Bogota: University of los Andes; 2015.Google Scholar
  67. 67.
    Bermudez C, Vasquez N. Plan de negocio de un dispositivo móvil para la realización de pruebas de VIH y VPH. Bogota: University of los Andes; 2015.Google Scholar
  68. 68.
    Riccò R, Meneghello A, Enrichi F. Signal enhancement in DNA microarray using dye doped silica nanoparticles: application to human papilloma virus (HPV) detection. Biosens Bioelectron. 2011;26:2761–5.CrossRefGoogle Scholar
  69. 69.
    Velez C, Torres-Díaz I, Maldonado-Camargo L, Rinaldi C, Arnold DP. Magnetic assembly and cross-linking of nanoparticles for releasable magnetic microstructures. ACS Nano. 2015;9:10165–72.CrossRefGoogle Scholar
  70. 70.
    Jiang H, Jiang D, Shao J, Sun X. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron. 2016;75:411–9.CrossRefGoogle Scholar
  71. 71.
    Rizzi G, Østerberg FW, Henriksen AD, Dufva M, Hansen MF. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor. J Magn Magn Mater. 2015;380:215–20.CrossRefGoogle Scholar
  72. 72.
    Deng Y, Idso MN, Galvan DD, Yu Q. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection. Anal Chim Acta. 2015;863:41–8.CrossRefGoogle Scholar
  73. 73.
    Lechuga LM, Tamayo J, Álvarez M, Carrascosa LG, Yufera A, Doldán R, et al. A highly sensitive microsystem based on nanomechanical biosensors for genomics applications. Sens Actuators B Chem. 2006;118:2–10.CrossRefGoogle Scholar
  74. 74.
    Xu L, Kong J. A multiplexed nucleic acid microsystem for point-of-care detection of HIV co-infection with MTB and PCP. Talanta. 2013;117:532–5.CrossRefGoogle Scholar
  75. 75.
    Kwapiszewski R, Kwapiszewska K, Kutter JP, Brzozka Z. Three-layer poly(methyl methacrylate) microsystem for analysis of lysosomal enzymes for diagnostic purposes. Anal Chim Acta. 2015;853:702–9.CrossRefGoogle Scholar
  76. 76.
    Gonzalez-Rivera JC, Osma JF. Fabrication of an amperometric flow-injection microfluidic biosensor based on laccase for in situ determination of phenolic compounds. Biomed Res Int. 2015. doi: 10.1155/2015/845261.Google Scholar
  77. 77.
    The Economist Intelligence Unit. The Internet of Things business index. London: The Economist Intelligence Unit; 2013.Google Scholar
  78. 78.
    Dijkman RM, Sprenkels B, Peeters T, Janssen A. Business models for the Internet of Things. Int J Inf Manag. 2015;35:672–8.CrossRefGoogle Scholar
  79. 79.
    Lee I, Lee K. The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus Horiz. 2015;58:431–40.CrossRefGoogle Scholar
  80. 80.
    Dressler F, Fischer S. Connecting in-body nano communication with body area networks: challenges and opportunities of the Internet of Nano Things. Nano Commun Netw. 2015;6:29–38.CrossRefGoogle Scholar
  81. 81.
    Henze M, Hermerschmidt L, Kerpen D, Häußling R, Rumpe B, Wehrle K. A comprehensive approach to privacy in the cloud-based Internet of Things. Fut Gener Comput Syst. 2015. doi: 10.1016/j.future.2015.09.016.Google Scholar
  82. 82.
    Brownell B. From matter to x-matter: exploring the newfound capacities of information-enhanced materials. Mater Des. 2015. doi: 10.1016/j.matdes.2015.03.027.Google Scholar
  83. 83.
    Vinay A, Shekhar VS, Rituparna J, Aggrawal T, Murthy KNB, Natarajan S. Cloud based big data analytics framework for face recognition in social networks using machine learning. Proc Comput Sci. 2015;50:623–30.CrossRefGoogle Scholar
  84. 84.
    Lemoyne R, Kerr W, Mastroianni T. Implementation of machine learning with an iPod application mounted to a cane for classifying assistive device usage. J Med Imaging Health Inform. 2015;5:1404–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Natalia Lopez-Barbosa
    • 1
  • Jorge D. Gamarra
    • 1
  • Johann F. Osma
    • 1
  1. 1.CMUA, Department of Electrical and Electronics EngineeringUniversity of los AndesBogotaColombia

Personalised recommendations