Skip to main content

Advertisement

Log in

Pushing back the frontiers of mercury speciation using a combination of biomolecular and isotopic signatures: challenge and perspectives

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mercury (Hg) pollution is considered a major environmental problem due to the extreme toxicity of Hg. However, Hg metabolic pathways in biota remain elusive. An understanding of these pathways is crucial to elucidating the (eco)toxic effects of Hg and its biogeochemical cycle. The development of a new analytical methodology based on both speciation and natural isotopic fractionation represents a promising approach for metabolic studies of Hg and other metal(loid)s. Speciation provides valuable information about the reactivity and potential toxicity of metabolites, while the use of natural isotopic signature analysis adds a complementary dynamic dimension that allows the life history of the target element to be probed, the source of the target element (i.e., the source of pollution) to be identified, and reactions to be tracked. The resulting combined (bio)molecular and isotopic signature affords precious insight into the behavior of Hg in biota and Hg detoxification mechanisms. In the long term, this highly innovative methodology could be used in life and environmental science studies of metal(loid)s to push back the frontiers of our knowledge in this field. This paper summarizes the current status of the application of Hg speciation and the isotopic signature of Hg at the biomolecular level in living organisms, and discusses potential future uses of this combination of techniques.

Application of Hg speciation and the isotopic signature of Hg to enhance our understanding of the roles of Hg in metabolic, toxicological, and environmental processes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3a–b
Fig. 4

Similar content being viewed by others

References

  1. Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature. 2014;512(1):65–8.

    Article  CAS  Google Scholar 

  2. Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish. Science. 2003;301(5637):1203.

    Article  CAS  Google Scholar 

  3. Pedrero Z, Ouerdane L, Mounicou S, Lobinski R, Monperrus M, Amouroux D. Identification of mercury and other metal complexes with metallothioneins in dolphin liver by hydrophilic interaction liquid chromatography with the parallel detection by ICP MS and electrospray hybrid linear/orbital trap MS/MS. Metallomics. 2012;4(5):473–9.

  4. Pedrero Zayas Z, Ouerdane L, Mounicou S, Lobinski R, Monperrus M, Amouroux D. Hemoglobin as a major binding protein for methylmercury in white-sided dolphin liver. Anal Bioanal Chem. 2014;406(4):1121–9.

    Article  CAS  Google Scholar 

  5. Epov VN, Rodriguez-Gonzalez P, Sonke JE, Tessier E, Amouroux D, Bourgoin LM, et al. Simultaneous determination of species-specific isotopic composition of Hg by gas chromatography coupled to multicollector ICPMS. Anal Chem. 2008;80(10):3530–8.

    Article  CAS  Google Scholar 

  6. Leermakers M, Baeyens W, Quevauviller P, Horvat M. Mercury in environmental samples: speciation, artifacts and validation. TrAC–Trend Anal Chem. 2005;24(5):383–93.

  7. Clémens S, Monperrus M, Donard OFX, Amouroux D, Guérin T. Mercury speciation in seafood using isotope dilution analysis: a review. Talanta. 2012;89:12–20.

    Article  Google Scholar 

  8. Brombach CC, Chen B, Corns WT, Feldmann J, Krupp EM. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry. Spectrochim Acta Part B. 2015;105:103–8.

  9. Brombach CC, Gajdosechova Z, Chen B, Brownlow A, Corns WT, Feldmann J, et al. Direct online HPLC-CV-AFS method for traces of methylmercury without derivatisation: a matrix-independent method for urine, sediment and biological tissue samples. Anal Bioanal Chem. 2015;407:973–81. doi:10.1007/s00216-014-8254-1.

  10. Sundberg J, Ersson B, Lönnerdal B, Oskarsson A. Protein binding of mercury in milk and plasma from mice and man—a comparison between methylmercury and inorganic mercury. Toxicology. 1999;137(3):169–84.

  11. Pedrero Z, Mounicou S, Monperrus M, Amouroux D. Investigation of Hg species binding biomolecules in dolphin liver combining GC and LC-ICP-MS with isotopic tracers. J Anal At Spectrom. 2011;26(1):187–94.

  12. Krupp EM, Mestrot A, Wielgus J, Meharg AA, Feldmann J. The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants. Chem Commun. 2009;28:4257–9. doi:10.1039/b823121d(28):4257-4259.

  13. Krupp EM, Milne BF, Mestrot A, Meharg AA, Feldmann J. Investigation into mercury bound to biothiols: structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS. Anal Bioanal Chem. 2008;390(7):1753–64.

  14. Trümpler S, Lohmann W, Meermann B, Buscher W, Sperling M, Karst U. Interaction of thimerosal with proteins—ethylmercury adduct formation of human serum albumin and β-lactoglobulin A. Metallomics. 2009;1(1):87–91.

  15. Trümpler S, Meermann B, Nowak S, Buscher W, Karst U, Sperling M. In vitro study of thimerosal reactions in human whole blood and plasma surrogate samples. J Trace Elem Med Biol. 2014;28(2):125–30.

  16. Bergquist BA, Blum JD. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science. 2007;318(5849):417–20.

  17. Blum JD, Sherman LS, Johnson MW. Mercury isotopes in earth and environmental sciences. Ann Rev Earth Planet Sci. 2014;42:249–69.

  18. Yin R, Feng X, Li X, Yu B, Du B. Trends and advances in mercury stable isotopes as a geochemical tracer. Trend Environ Analyt Chem. 2014;2:1–10.

  19. Kritee K, Blum JD, Reinfelder JR, Barkay T. Microbial stable isotope fractionation of mercury: a synthesis of present understanding and future directions. Chem Geol. 2013;336:13–25.

  20. Yin R, Feng X, Meng B. Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environ Sci Technol. 2013;47(5):2238–45.

  21. Feng C, Pedrero Z, Gentès S, Barre J, Renedo M, Tessier E, et al. Specific pathways of dietary methylmercury and inorganic mercury determined by mercury speciation and isotopic composition in zebrafish (Danio rerio). Environ Sci Technol. 2015;49:12984–93. doi:10.1021/acs.est.5b03587.

  22. Kwon SY, Blum JD, Carvan MJ, Basu N, Head JA, Madenjian CP, et al. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. Environ Sci Technol. 2012;46(14):7527–34.

  23. Gantner N, Hintelmann H, Zheng W, Muir DC. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes. Environ Sci Technol. 2009;43(24):9148–54.

  24. Perrot V, Pastukhov MV, Epov VN, Husted S, Donard OFX, Amouroux D. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Environ Sci Technol. 2012;46(11):5902–11.

  25. Senn DB, Chesney EJ, Blum JD, Bank MS, Maage A, Shine JP. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environ Sci Technol. 2010;44(5):1630–7.

  26. Zheng W, Xie Z, Bergquist BA. Mercury stable isotopes in ornithogenic deposits as tracers of historical cycling of mercury in Ross Sea, Antarctica. Environ Sci Technol. 2015;49(13):7623–32.

  27. Masbou J, Point D, Sonke JE, Frappart F, Perrot V, Amouroux D, et al. Hg stable isotope time trend in ringed seals registers decreasing sea ice cover in the Alaskan Arctic. Environ Sci Technol. 2015;49(15):8977–85.

  28. Laffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J, Amouroux D, et al. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. Environ Sci Technol. 2011;45(23):9910–6.

  29. Li M, Sherman LS, Blum JD, Grandjean P, Mikkelsen B, Weihe P, et al. Assessing sources of human methylmercury exposure using stable mercury isotopes. Environ Sci Technol. 2014;48(15):8800–6.

  30. Sherman LS, Blum JD, Franzblau A, Basu N. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ Sci Technol. 2013;47(7):3403–9.

  31. Perrot V, Bridou R, Pedrero Z, Guyoneaud R, Monperrus M, Amouroux D. Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment. Environ Sci Technol. 2015;49(3):1365–73.

  32. Rodŕiguez-Gonźalez P, Epov VN, Bridou R, Tessier E, Guyoneaud R, Monperrus M, et al. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions. Environ Sci Technol. 2009;43(24):9183–8.

  33. Krupp EM, Donard OFX. Isotope ratios on transient signals with GC-MC-ICP-MS. Int J Mass Spectrom. 2005;242(2–3):233–42.

  34. Perrot V, Jimenez-Moreno M, Berail S, Epov VN, Monperrus M, Amouroux D. Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes. Chem Geol. 2013;355:153–62.

  35. Masbou J, Point D, Sonke JE. Application of a selective extraction method for methylmercury compound specific stable isotope analysis (MeHg-CSIA) in biological materials. J Anal At Spectrom. 2013;28(10):1620–8.

  36. Malinovsky D, Vanhaecke F. Mercury isotope fractionation during abiotic transmethylation reactions. Int J Mass Spectrom. 2011;307(1–3):214–24.

  37. Epov VN, Berail S, Jimenez-Moreno M, Perrot V, Pecheyran C, Amouroux D, et al. Approach to measure isotopic ratios in species using multicollector-ICPMS coupled with chromatography. Anal Chem. 2010;82(13):5652–62.

  38. Maréchal CN, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol. 1999;156(1–4):251–73.

  39. Epov VN, Berail S, Pécheyran C, Amouroux D, Donard OFX. Isotopic analysis via multi-collector inductively coupled plasma mass spectrometry in elemental speciation. In: Vanhaecke F, Degryse P, editors. Isotopic analysis: fundamentals and applications using ICP-MS. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 495–517.

  40. Rodríguez-González P, Epov VN, Pecheyran C, Amouroux D, Donard OFX. Species-specific stable isotope analysis by the hyphenation of chromatographic techniques with MC-ICPMS. Mass Spectrom Rev. 2012;31(4):504–21.

  41. San Blas OG, Marchante Gayón JM, García Alonso JI. Evaluation of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for sulfur metabolic studies using 34S-labelled yeast. J Anal At Spectrom. 2015;30(8):1764–73.

  42. Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom. 2008;23(7):955–61.

  43. Zhu XK, Guo Y, Williams RJP, O’Nions RK, Matthews A, Belshaw NS, et al. Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett. 2002;200(1–2):47–62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoyne Pedrero.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science, with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrero, Z., Donard, O.F.X. & Amouroux, D. Pushing back the frontiers of mercury speciation using a combination of biomolecular and isotopic signatures: challenge and perspectives. Anal Bioanal Chem 408, 2641–2648 (2016). https://doi.org/10.1007/s00216-015-9243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9243-8

Keywords

Navigation