Skip to main content

Advertisement

Log in

Green near-infrared determination of copper and mancozeb in pesticide formulations

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A green analytical procedure has been successfully developed for the simultaneous determination of copper and mancozeb in phytosanitary products. The method is based on different direct measurements of diffuse reflectance near-infrared (DR-NIR) spectra. Accuracy of the method has been evaluated by comparison of the obtained copper and mancozeb concentrations with those provided by reference methodologies based on titrimetric procedures. The average relative prediction error was 0.7 and 1.6 % for copper and mancozeb, respectively. The evaluation of the greenness of the DR-NIR procedure provided 100 points, which is the maximum value in the Green Certificate ranking, because of the absence of consumed reagents and waste generation and energy consumption lower than 0.1 kWh.

Direct green NIR determination of copper and mancozeb in pesticides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Komárek M, Vanek A, Chrasntý V, Száková J, Kubová K, Drahota P, et al. Retention of copper originating from the different fungicides in contrasting soil types. J Hazard Mater. 2009;166:1395.

    Article  Google Scholar 

  2. Collaborative International Analytical Pesticides Council: electrolytic method for copper in technical copper compounds (CIPAC 44/TC/M/-). CIPAC Handbook. 1993;Volume E, 42.

  3. Collaborative International Analytical Pesticides Council: volumetric thiosulphate method for copper in technical copper compounds (CIPAC 44/TC/M/-). CIPAC Handbook. 1993;Volume E, 44.

  4. Ferreira LC, Scavroni J, Vaz da Silva JR, Cataneo AC, Martins D, Fernandes Borao CS. Copper oxychloride fungicide and its effect on growth and oxidative stress of potato plants. Pestic Biochem Physiol. 2014;112:63.

    Article  CAS  Google Scholar 

  5. Shrivas K, Jaiswal NK. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame absorption spectrometry. Food Chem. 2013;141:2263.

    Article  CAS  Google Scholar 

  6. Gallart-Mateu D, Armenta S, Luisa Cervera M, de la Guardia M. The importance of incorporating a waste detoxification step in analytical methodologies. Anal Methods. 2015. doi:10.1039/c5ay01202c.

    Google Scholar 

  7. Balduini PL, Cavalli S, Lai Sharma J. Determination of transition metals in wine by IC, DPASV-DPCSV and ZGFFAAS coupled with UV photolysis. J Agric Food Chem. 1999;47:1999.

    Article  Google Scholar 

  8. Isildak I, Asan A, Andac M. Spectrophotometric determination of copper (II) at low μg L−1 levels using cation-exchange microcolumn in flow-injection. Talanta. 1999;48:219.

    Article  CAS  Google Scholar 

  9. La Pera L, Dugo G, Rando R, Di Bella G, Maisano R, Salvo F. Statistical study of the influence of fungicide treatments (mancozeb, zoxamide and copper oxychloride) on heavy metal concentrations in Sicilian red wine. Food Addit Contam Part A. 2008;25(3):302.

    Article  Google Scholar 

  10. Szymczycha-Madeja A, Welna M, Poh P. Determination of essential and non-essential elements in green and black teas by FAAS and ICP OES simplified—multivariate classification of different tea products. Microchem J. 2015;121:122.

    Article  CAS  Google Scholar 

  11. EXTOXNET. Extension Toxicology Network. Pesticide information profiles. 1996. http://extoxnet.orst.edu/pips/mancozeb.htm.

  12. Collaborative International Analytical Pesticides Council: analysis of technical and formulated pesticides: copper compounds + mancozeb wettable powders (CIPAC 44 + 34/WP/M/-). CIPAC Handbook. 1998;Volume H, 96.

  13. Lo CC, Ho MH, Hung MD. Use of high performance liquid chromatographic and atomic absorption methods to distinguish propineb, zineb, maneb and mancozeb fungicides. J Agric Food Chem. 1996;44(9):2720.

    Article  CAS  Google Scholar 

  14. Zena A, Conte P, Piccolo A. GC/ECD determination of ethylenethiourea residue in tobacco leaves. Fresenius Environ Bull. 1999;8:116.

    CAS  Google Scholar 

  15. Moros J, Armenta S, Garrigues S, de la Guardia M. Comparison of two vibrational procedures for direct determination of mancozeb in agrochemicals. Talanta. 2007;72:72.

    Article  CAS  Google Scholar 

  16. Armenta S, Moros J, Garrigues S, de la Guardia M. Direct determination of Mancozeb by photoacoustic spectrometry. Anal Chim Acta. 2006;567:255.

    Article  CAS  Google Scholar 

  17. de la Guardia M, Armenta S. The basis of a greener analytical chemistry. Compr Anal Chem. 2011;57:25.

    Article  Google Scholar 

  18. de la Guardia M, Garrigues S (ed). Handbook of green analytical chemistry. New York: Wiley; 2012.

  19. Galuszka A, Migaszewski Z, Namiesnik J. The twelve principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem. 2013;50:78.

    Article  CAS  Google Scholar 

  20. Armenta S, de la Guardia M, Namiesnik J. In: Valcarcel M, editor. Green microextraction. In Analytical microextraction techniques. ebook (in press). Bentham Science; 2015.

  21. Moros J, Garrigues S, de la Guardia M. Vibrational spectroscopy provides a green tool for multi-component analysis. Trends Anal Chem. 2010;29:578.

    Article  CAS  Google Scholar 

  22. Armenta S, Garrigues S, de la Guardia M. Recent developments in flow-analysis vibrational spectroscopy. Trends Anal Chem. 2007;26:775.

    Article  CAS  Google Scholar 

  23. Garrigues S, de la Guardia M. Non-invasive analysis of solid samples. Trends Anal Chem. 2013;43:161.

    Article  CAS  Google Scholar 

  24. Frost RL, Reddy BJ, Keeffe EC. Structure of selected basic copper (II) sulphate mineral based upon spectroscopy—implications for hydrogen bonding. J Mol Struct. 2010;977(1-3):90.

    Article  CAS  Google Scholar 

  25. Galuszka A, Konieczka P, Migaszewski ZM, Namiesnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Anal Chem. 2012;37:61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Generalitat Valenciana (Project PROMETEO II 2014-077) and Ministerio de Economia y Competitividad-Feder (Project CTQ 2014-52841-P and Project CTQ 2012-38635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. de la Guardia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallart-Mateu, D., Armenta, S. & de la Guardia, M. Green near-infrared determination of copper and mancozeb in pesticide formulations. Anal Bioanal Chem 408, 1259–1268 (2016). https://doi.org/10.1007/s00216-015-9235-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9235-8

Keywords

Navigation