Skip to main content
Log in

Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Small sulfur-containing compounds are involved in several important biochemical processes, including—but not limited to—redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates—with only one exception—are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes.

Electrochemistry-Mass spectrometry reveals changes in the oxidation pathway of thiols in the presence of cisplatin and enables detection of labile reaction intermediates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002;64:1019.

    Article  CAS  Google Scholar 

  2. Couturier J, Chibani K, Jacquot JP, Rouhier N. Cysteine-based redox regulation and signaling in plants. Frontiers Plant Sci. 2013;4:105.

    Google Scholar 

  3. Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta. 2014;1840:847.

    Article  CAS  Google Scholar 

  4. Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12:746.

    Article  CAS  Google Scholar 

  5. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7.

    Article  CAS  Google Scholar 

  6. Zimmerman MT, Bayse CA, Ramoutar RR, Brumaghim JL. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding. J Inorg Biochem. 2015;145:30.

    Article  CAS  Google Scholar 

  7. Huska D, Zitka O, Adam V, Beklova M, Krizkova S, Zeman L, et al. A sensor for investigating the interaction between biologically important heavy metals and glutathione. Czech J Anim Sci. 2007;52:37.

    CAS  Google Scholar 

  8. Huang KP, Huang FL. Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem Pharmacol. 2002;64:1049.

    Article  CAS  Google Scholar 

  9. Szajewski RP, Whitesides GM. Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc. 1980;102:2011.

    Article  CAS  Google Scholar 

  10. Messens J, Collet JF. Thiol-disulfide exchange in signaling: disulfide bonds as a switch. Antiox Redox Signal. 2013;18:1594.

    Article  CAS  Google Scholar 

  11. Hopmann KH. Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem. 2014;53:2760.

    Article  CAS  Google Scholar 

  12. Akam EA, Chang TM, Astashkin AV, Tomat E. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators. Metallomics. 2014;6:1905.

    Article  CAS  Google Scholar 

  13. Hogg PJ. Disulfide bonds as switches for protein function. Trends Biochem Sci. 2003;28:210.

    Article  CAS  Google Scholar 

  14. Kim HJ, Ha S, Lee HY, Lee KJ. ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom Rev. 2015;34:184.

    Article  CAS  Google Scholar 

  15. Martinez S, Wu R, Sanishvili R, Liu D, Holz R. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. J Am Chem Soc. 2014;136:1186.

    Article  CAS  Google Scholar 

  16. Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv Protein Chem. 2001;58:215.

    Article  CAS  Google Scholar 

  17. Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nature Chem Biol. 2012;8:57.

    Article  CAS  Google Scholar 

  18. Chiu J, Tactacan CM, Tan SX, Lin RCY, Wouters MA, Dawes IW. Cell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p. J Biol Chem. 2011;286:5204.

    Article  CAS  Google Scholar 

  19. Bachi A, Dalle-Donne I, Scaloni A. Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev. 2013;113:596.

    Article  CAS  Google Scholar 

  20. Ghesquiere B, Gevaert K. Proteomics methods to study methionine oxidation. Mass Spectrom Rev. 2014;33:147.

    Article  CAS  Google Scholar 

  21. Xu G, Chance MR. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting. Anal Chem. 2005;77:2437.

    Article  CAS  Google Scholar 

  22. Triquigneaux M, Tuccio B, Charles L. Combining EPR and ESI-MS/MS to study the reactivity of alkylthiols and cysteine towards 2-methyl-2-nitrosopropane (MNP). Anal Methods. 2010;2:694.

    Article  CAS  Google Scholar 

  23. Maeda H, Wu HY, Yamauchi Y, Ohmori H. Important role of the 3-mercaptopropionamide moiety in glutathione: promoting effect on decomposition of the adduct of glutathione with the oxoammonium ion of TEMPO. J Org Chem. 2005;70:8338.

    Article  CAS  Google Scholar 

  24. Noguchi T, Nojiri M, Takei K, Odaka M, Kamiya N. Protonation structures of cys-sulfinic and cys-sulfenic acids in the photosensitive nitrile hydratase revealed by Fourier transform infrared spectroscopy. Biochemistry. 2003;42:11642.

    Article  CAS  Google Scholar 

  25. Gori SS, Lorkiewicz P, Ehringer DS, Belshoff AC, Higashi RM, Fan TWM, et al. Profiling thiol metabolites and quantification of cellular glutathione using FT-ICR-MS spectrometry. Anal Bioanal Chem. 2014;406:4371.

    Article  CAS  Google Scholar 

  26. Furdui CM, Poole LB. Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom Rev. 2014;33:126.

    Article  CAS  Google Scholar 

  27. Reddie KG, Seo YH, Muse III WB, Leonard SE, Carroll KS. A chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol BioSyst. 2008;4:521.

    Article  CAS  Google Scholar 

  28. Federova M, Kuleva N, Hoffmann R. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. J Proteome Res. 2010;9:1598.

    Article  CAS  Google Scholar 

  29. Block E, Dane AJ, Cody RB. Crushing garlic and slicing onions: detection of sulfenic acids and other reactive organosulfur intermediates from garlic and other alliums using direct analysis in real-time mass spectrometry (DART-MS). Phosphorus Sulfur. 2011;186:1085.

    Article  CAS  Google Scholar 

  30. Isokawa M, Funatsu T, Tsunoda M. Fast and simultaneous analysis of biothiols by high-performance liquid chromatography with fluorescence detection under hydrophilic interaction chromatography conditions. Analyst. 2013;138:3802.

    Article  CAS  Google Scholar 

  31. Schmidt AC, Lauckner S, Lindner K. CZE of sulfur-containing amino acids and peptides and its application to the quantitative study of heavy metal-caused thiol oxidations. Chromatographia. 2012;75:661.

    Article  CAS  Google Scholar 

  32. Ismail A, d’Orlye F, Griveau S, Francassi da Silva JA, Bedioui F, Varenne A. Capillary electrophoresis with mass spectrometric detection for separation of S-nitrosoglutathione and its decomposition products: a deeper insight into the decomposition pathways. Anal Bioanal Chem. 2015;407:6221.

    Article  CAS  Google Scholar 

  33. Enache TA, Oliveira-Brett AM. Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine. Bioelectrochem. 2011;81:46.

    Article  CAS  Google Scholar 

  34. Nantaphol S, Chailapakul O, Siangproh W. Ultrasensitive and simple method for determination of N-acetyl-L-cysteine in drug formulations using a diamond sensor. Electroanalysis. 2014;26:1024.

    Article  CAS  Google Scholar 

  35. Lee PT, Lowinsohn D, Compton RG. Simultaneous detection of homocysteine and cysteine in the presence of ascorbic acid and glutathione using a nanocarbon modified electrode. Electroanalysis. 2014;26:1488.

    Article  CAS  Google Scholar 

  36. Rojas L, Molero L, Tapia RA, del Rio R, del Valle MA, Antilen M, et al. Electrochemistry behavior of endogenous thiols on fluorine doped tin electrodes. Electrochim Acta. 2011;56:8711.

    Article  CAS  Google Scholar 

  37. Spataru N, Sarada BV, Popa E, Tryk DA, Fujishima A. Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal Chem. 2001;73:514.

    Article  CAS  Google Scholar 

  38. Masek A, Chrzescijanska E, Zaborski M. Estimation of the antioxidative properties of amino acids—an electrochemical approach. Int J Electrochem Sci. 2014;9:7904.

    CAS  Google Scholar 

  39. Bagiyan GA, Koroleva IK, Soroka NV, Ufimtsev AV. Oxidation of thiol compounds by molecular oxygen in aqueous solutions. Russ Chem Bull Int Ed. 2003;52:1135.

    Article  CAS  Google Scholar 

  40. Zeida A, Babbush R, Gonzalez Lebrero MC, Trujillo M, Radi R, Estrin DA. Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm. Chem Res Toxicol. 2012;25:741.

    Article  CAS  Google Scholar 

  41. Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxinitrite. Biochemistry. 2003;42:9906.

    Article  CAS  Google Scholar 

  42. Storkey C, Davies MJ, Pattison DI. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Rad Biol Med. 2014;73:60.

    Article  CAS  Google Scholar 

  43. Simon H, Melles D, Jacquoilleot S, Sanderson P, Zazzeroni R, Karst U. Combination of electrochemistry and nuclear magnetic resonance spectroscopy for metabolism studies. Anal Chem. 2012;84:8777.

    Article  CAS  Google Scholar 

  44. Nunes LMS, Morales TB, Barbosa LL, Mazo LH, Colnago LA. Monitoring electrochemical reactions in situ using steady-state free precession 13C NMR spectroscopy. Anal Chim Acta. 2014;850:1.

    Article  CAS  Google Scholar 

  45. McClintock C, Kertesz V, Hettich RL. Development of an electrochemical oxidation method for probing higher order protein structure with mass spectrometry. Anal Chem. 2008;80:3304.

    Article  CAS  Google Scholar 

  46. Looi DW, Iftikhar I, Brajter-Toth A. Electrochemical attributes of electrochemistry in tandem with electrospray mass spectrometry. Electroanalysis. 2014;26:319.

    Article  CAS  Google Scholar 

  47. Liu P, Lu M, Zheng Q, Zhang Y, Dewald HD, Chen H. Recent advances of electrochemical mass spectrometry. Analyst. 2013;138:5519.

    Article  CAS  Google Scholar 

  48. Faber H, Vogel M, Karst U. Electrochemistry/mass spectrometry as a tool in metabolism studies—a review. Anal Chim Acta. 2014;834:9.

    Article  CAS  Google Scholar 

  49. Oberacher H, Pitterl F, Erb R, Plattner S. Mass spectrometric methods for monitoring redox processes in electrochemical cells. Mass Spectrom Rev. 2015;34:64.

    Article  CAS  Google Scholar 

  50. Büter L, Vogel M, Karst U. Adduct formation of electrochemically generated reactive intermediates with biomolecules. Trends Anal Chem. 2015;70:74.

    Article  CAS  Google Scholar 

  51. Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—current state and future perspectives. J Chromatogr A. 2012;1259:16.

    Article  CAS  Google Scholar 

  52. Roscher J, Faber H, Stoffels M, Hachmöller O, Happe J, Karst U. Nonaqueous capillary electrophoresis as separation technique to support metabolism studies by means of electrochemistry and mass spectrometry. Electrophoresis. 2014;35:2386.

    Article  CAS  Google Scholar 

  53. Michman M, Appelbaum L, Gun J, Modestov AD, Lev O. Homogeneous catalysis and selectivity in electrochemistry. Organometallics. 2014;33:4729.

    Article  CAS  Google Scholar 

  54. Gutkin V, Gun J, Lev O. Stripping analysis of molecules and proteins by online electrochemical flow cell/mass spectrometry. Anal Chem. 2009;81:8396.

    Article  CAS  Google Scholar 

  55. Modestov AD, Gun J, Mudrov A, Lev O. Radial electrochemical flow cell for on-line coupling with mass spectrometry: theory and electrooxidation of dimethylaminomethyl ferrocene. Electroanalysis. 2004;16:367.

    Article  CAS  Google Scholar 

  56. Zabel R, Kullmann M, Kalayda GV, Jaehde U, Weber G. Optimized sample preparation strategy for the analysis of low molecular mass adducts of a fluorescent cisplatin analogue in cancer cell lines by CE-dual-LIF. Electrophoresis. 2015;36:509.

    Article  CAS  Google Scholar 

  57. Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF, Neuwelt EA. Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemother Pharmacol. 2008;62:235.

    Article  CAS  Google Scholar 

  58. Appenroth D, Winnefeld K, Schröter H, Rost M. Beneficial effect of acetylcysteine on cisplatin nephrotoxicity in rats. J Appl Toxicol. 1993;13:189.

    Article  CAS  Google Scholar 

  59. Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant. 2008;23:2198.

    Article  CAS  Google Scholar 

  60. Johansson T, Weidolf L, Jurva U. Mimicry of phase I drug metabolism—novel methods for metabolite characterization and synthesis. Rapid Commun Mass Spectrom. 2007;21:2323.

    Article  CAS  Google Scholar 

  61. Miao R, Yang G, Miao Y, Mei Y, Hong J, Zhao C, et al. Interactions of platinum(II) complexes with sulfur-containing peptides studied by electrospray ionization mass spectrometry and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:1031.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft for financial support (grant WE 2422/7-1). The financial support from the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen and by the Bundesministerium für Bildung und Forschung is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Weber.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 8008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabel, R., Weber, G. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin. Anal Bioanal Chem 408, 1237–1247 (2016). https://doi.org/10.1007/s00216-015-9233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9233-x

Keywords

Navigation