Skip to main content
Log in

Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sources of C-rich particles at work places in two aluminium smelters in Norway were studied by transmission electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology, nanostructure and chemistry, three different types of C-rich particles are distinguished: (a) chain-like agglomerates (70–100 % by number, relative to the sum of C-rich particles) consisting of primary particles with typical onion-shell structure of graphene layers, (b) multi-walled carbon nanotube particles (≈3 %) and (c) spheres or agglomerates of amorphous C-rich particles (0–30 %). Chain-like agglomerates are interpreted as diesel soot in accordance with literature data on primary particle diameter, chemical composition and nanostructure of primary particles. The source of the observed multi-walled carbon nanotubes is not known. The amorphous C-rich particles most likely consist of organic carbon species which cannot be characterized further by X-ray microanalysis. Unaltered graphitic electrode material was not found among the C-rich particles. The high fraction of diesel soot particles indicates that elemental carbon is generally suited as proxy for diesel soot in aluminium smelters. However, due to the presence of carbon nanotubes and amorphous C-rich particles, detailed characterization of sources of carbon-rich particles by electron microscopy is recommended for accurate assessment of adverse health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yttri KE, Myhre CL, Tørseth K (2009) The carbonaceous aerosol—a remaining challenge. WMO Bull 58:54–60

    Google Scholar 

  2. Baltensperger U, Barrie L, Fröhlich C, Gras J, Jäger H, Jennings SG, Li SM, Ogren JA, Wiedensohler A, Wehrli C, Wilson J (2003) WMO/GAW aerosol measurement procedures, guidelines and recommendations, WMO/GAW No.153, 67 pp

  3. Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Baltensperger U, Holzer-Popp T, Kinne S, Pappalardo G, Sugimoto N, Wehrli C, Wiedensohler A, Zhang XY (2013) Recommendations for reporting “black carbon” measurements. Atmos Chem Phys 13:8365–8379

    Article  CAS  Google Scholar 

  4. Niessner R (2014) The many faces of soot: characterization of soot nanoparticles produced by engines. Angew Chem Int Ed 53:12366–12379

    CAS  Google Scholar 

  5. Buseck PR, Adachi K, Gelencsér A, Tompa É, Pósfai M (2012) Are black carbon and soot the same? Atmos Chem Phys Discuss 12:24821–24846

    Article  Google Scholar 

  6. Chow JC, Yu JZ, Watson JG, Ho SSH, Bohannan TL, Hays MD, Fung KK (2007) The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review. J Environ Sci Health A 42:1521–1541

    Article  CAS  Google Scholar 

  7. McClellan RO (1987) Health effects of exposure to diesel exhaust particles. Annu Rev Pharmacol Toxicol 27:279–300

    Article  CAS  Google Scholar 

  8. Lipsett M, Campleman S (1999) Occupational exposure to diesel exhaust and lung cancer: a meta-analysis. Am J Public Health 89:1009–1017

    Article  CAS  Google Scholar 

  9. Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandström T, Dahlén SE (2001) Health effects of diesel exhaust emissions. Eur Respir J 17:733–746

    Article  CAS  Google Scholar 

  10. Silverman DT, Samanic CM, Lubin JH, Blair AE, Stewart PA, Vermeulen R, Coble JB, Rothman N, Schleiff PL, Travis WD, Ziegler RG, Wacholder S, Attfield MD (2012) The diesel exhaust in miners study: a nested case–control study of lung cancer and diesel exhaust. J Natl Cancer Inst 104:1–14

    Google Scholar 

  11. Attfield MD, Schleiff PL, Lubin JH, Blair A, Stewart PA, Vermeulen R, Coble JB, Silverman DT (2012) The diesel exhaust in miners study: a cohort mortality study with emphasis on lung cancer. J Natl Cancer Inst 104:869–883

    Article  CAS  Google Scholar 

  12. Janssen NAH, Gerlofs-Nijland ME, Lanki T, Salonen RO, Cassee F, Hoek G, Fischer P, Brunekreef B, Krzyzanowski M (2012) Health effects of black carbon. World Health Organization, Regional Office for Europe, Copenhagen

    Google Scholar 

  13. Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Guha N, Loomis D, Straif K (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664

    Article  Google Scholar 

  14. Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    Article  CAS  Google Scholar 

  15. Schauer JJ (2003) Evaluation of elemental carbon as a marker for diesel particulate matter. J Expo Anal Environ Epidemiol 13:443–453

    Article  CAS  Google Scholar 

  16. Thomassen Y, Berlinger B, Ellingsen DG, Daae HL, Friisk G, Romanova N, Skaugset NP, Weinbruch S (2015) Kartlegging av exponering for dieseleksospartikler i norsk arbeidsliv ved bruk av elementært karbon som markør. STAMI-rapport 2/16, Statens Arbeidsmiljøinstitutt, Oslo, ISSN 1502-0932, (in Norwegian)

  17. Pronk A, Coble J, Stewart PA (2009) Occupational exposure to diesel engine exhaust: a literature review. J Expo Sci Environ Epidemiol 19:443–457

    Article  CAS  Google Scholar 

  18. Burkin AR (1987) Production of aluminium and alumina. Wiley, Chichester

    Google Scholar 

  19. Thonstad J, Fellner P, Haaberg GM, Híves J, Kvande H, Sterten Å (2001) Aluminium electrolysis: fundamentals of the Hall-Héroult process, 3rd edn. Aluminium-Verlag, Düsseldorf

    Google Scholar 

  20. Höflich BLW, Weinbruch S, Theissmann R, Gorzawski H, Ebert M, Ortner HM, Skogstad A, Ellingsen DG, Drabløs PA, Thomassen Y (2005) Characterization of individual aerosol particles in workroom air of aluminium smelter potrooms. J Environ Monit 7:419–424

    Article  Google Scholar 

  21. Thomassen Y, Koch W, Dunkhorst W, Ellingsen DG, Skaugset NP, Jordbekken L, Drabløs PA, Weinbruch S (2006) Ultrafine particles at workplaces of a primary aluminium smelter. J Environ Monit 8:127–133

    Article  CAS  Google Scholar 

  22. Miller A, Frey G, King G, Sunderman C (2010) A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol 44:417–427

    Article  CAS  Google Scholar 

  23. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/

    Google Scholar 

  24. Wentzel M, Gorzawski H, Naumann K-H, Saathoff H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci 34:1347–1370

    Article  CAS  Google Scholar 

  25. Chen Y, Shah N, Huggins FE, Huffman GP (2005) Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ Sci Technol 39:1144–1151

    Article  CAS  Google Scholar 

  26. Vernooij MGC, Mohr M, Tzvetkov G, Zelenay V, Huthwelker T, Kaegi R, Gehrig R, Grobéty B (2009) On source identification and alteration of single diesel and wood smoke soot particles in the atmosphere; an X-ray microspectroscopy study. Environ Sci Technol 43:5339–5344

    Article  CAS  Google Scholar 

  27. Tumolva L, Park J-Y, Kim J-S, Miller AL, Chow JC, Watson JG, Park K (2010) Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using TEM/EDS. Aerosol Sci Technol 44:202–215

    Article  CAS  Google Scholar 

  28. Kocbach A, Johansen BV, Schwarze PE, Namork E (2005) Analytical electron microscopy of combustion particles: a comparison of vehicle exhaust and residential wood smoke. Sci Total Environ 346:231–243

    Article  CAS  Google Scholar 

  29. Kocbach A, Li Y, Yttri KE, Cassee FR, Schwarze PE, Namork E (2006) Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke. Part Fibre Toxicol 3:1

    Article  Google Scholar 

  30. Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particulates. Environ Sci Technol 36:4943–4947

    Article  CAS  Google Scholar 

  31. Mazaheri M, Bostrom TE, Johnson GR, Morawska L (2013) Composition and morphology of particle emissions from in-use aircraft during takeoff and landing. Environ Sci Technol 47:5235–5242

    Article  CAS  Google Scholar 

  32. Liati A, Brem BT, Durdina L, Vögtli M, Dasilva YAR, Eggenschwiler PD, Wang J (2014) Electron microscopic study of soot particulate matter emissions from aircraft turbine engines. Environ Sci Technol 48:10975–10983

    Article  CAS  Google Scholar 

  33. Pósfai M, Simonics R, Li J, Hobbs PV, Buseck PR (2003) Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J Geophys Res 108:8483. doi:10.1029/2002JD002291

    Article  Google Scholar 

  34. Kis VK, Pósfai M, Lábár JL (2006) Nanostructure of atmospheric soot particles. Atmos Environ 40:5533–5542

    Article  CAS  Google Scholar 

  35. Park K, Kittelson DB, McMurry PH (2004) Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): relationships to particle mass and mobility. Aerosol Sci Technol 38:881–889

    Article  CAS  Google Scholar 

  36. Smekens A, Moreton Godoi RH, Berghmans P, van Grieken R (2005) Characterisation of soot emitted by domestic heating, aircraft and cars using diesel or biodiesel. J Atmos Chem 52:45–62

    Article  CAS  Google Scholar 

  37. Lapuerta M, Martos FJ, Herreros JM (2007) Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates. J Aerosol Sci 38:455–466

    Article  CAS  Google Scholar 

  38. Vander Wal RL, Bryg VM, Hays MD (2010) Fingerprinting soot (towards source identification): physical structure and chemical composition. J Aerosol Sci 41:108–117

    Article  CAS  Google Scholar 

  39. Harris PJF (2001) Carbonaceous contaminants on support films for transmission electron microscopy. Carbon 39:909–913

    Article  CAS  Google Scholar 

  40. Klie RF, Ciuparu D, Pfefferle L, Zhu Y (2004) Multi-walled carbon nanotubes on amorphous carbon films. Carbon 42:1953–1957

    Article  CAS  Google Scholar 

  41. Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez DA (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanoparticle Res 6:241–251

    Article  CAS  Google Scholar 

  42. Murr LE, Bang JJ, Lopez DA, Guerrero PA, Esquivel EV, Choudhuri AR, Subramanya M, Morandi M, Holian A (2004) Carbon nanotubes and nanocrystals in methane combustion and the environmental implications. J Mater Sci 39:2199–2204

    Article  CAS  Google Scholar 

  43. Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact 55:50–65

    Article  CAS  Google Scholar 

  44. Chianelli PR, Yácaman MJ, Arenas J, Aldape F (1998) Atmospheric nanoparticles in photocatalytic and thermal production of atmospheric pollutants. J Hazard Subst Res 1:1–17

    CAS  Google Scholar 

  45. Shi Y, Murr LE, Soto KF, Lee WY, Guerrero PA, Ramirez DA (2007) Characterization and comparison of speciated atmospheric carbonaceous particulates and their polycyclic aromatic hydrocarbon contents in the context of the Paso del Norte airshed along the U.S.-Mexico border. Polycyclic Aromat Compd 27:361–400

    Article  CAS  Google Scholar 

  46. Evelyn A, Mannick S, Sermon PA (2003) Unusual carbon-based nanofibers and chains among diesel-emitted particles. Nano Lett 3:63–64

    Article  CAS  Google Scholar 

  47. Jung HS, Miller A, Park K, Kittelson DB (2013) Carbon nanotubes among diesel exhaust particles: real samples or contaminants? J Air Waste Manag Assoc 63:1199–1204

    Article  CAS  Google Scholar 

  48. Lagally CD, Reynolds CCO, Grieshop AP, Kandlikar M, Rogak SN (2012) Carbon nanotube and fullerene emissions from spark-ignited engines. Aerosol Sci Technol 46:156–164

    Article  CAS  Google Scholar 

  49. Murr LE, Guerrero PA (2006) Carbon nanotubes in wood soot. Atmos Sci Lett 7:93–95

    Article  Google Scholar 

  50. Gjønnes K, Skogstad A, Hetland S, Ellingsen DG, Thomassen Y, Weinbruch S (2011) Characterization of workplace aerosols in the manganese alloy production industry by electron microscopy. Anal Bioanal Chem 399:1011–1020

    Article  Google Scholar 

  51. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  52. Zhuxian Q (1992) A new contribution to the theory of anode effect in aluminium electrolysis. Chin J Met Sci Technol 8:15–19

    Google Scholar 

  53. Pósfai M, Gelencsér A, Simonics R, Arató K, Li J, Hobbs PV, Buseck PR (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res 109, doi: 10.1029/2003JD004169

  54. Mahajan A, Kingon A, Kukovecz Á, Konya Z, Vilarinho PM (2013) Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater Lett 90:165–168

    Article  CAS  Google Scholar 

  55. Garza KM, Soto KF, Murr LE (2008) Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int J Nanomed 3:83–94

    Article  CAS  Google Scholar 

  56. Mattenklott M, Bagschik U, Chromy W, Dahmann D, Kieser D, Rietschel P, Schwalb J, Sinner KE, Stückrath M, Van Gelder R, Wilms V (2002) Dieselmotoremissionen am Arbeitsplatz. Gefahrstoffe – Reinhalt Luft 62:13–23 (in German)

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Confederation of Norwegian Enterprise Working Environment Fund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Weinbruch.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinbruch, S., Benker, N., Kandler, K. et al. Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters. Anal Bioanal Chem 408, 1151–1158 (2016). https://doi.org/10.1007/s00216-015-9217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9217-x

Keywords

Navigation