Analytical and Bioanalytical Chemistry

, Volume 408, Issue 4, pp 1107–1124 | Cite as

Multi-instrument characterization of five nanodiamond samples: a thorough example of nanomaterial characterization

  • Bhupinder Singh
  • Stacey J. Smith
  • David S. Jensen
  • Hodge F. Jones
  • Andrew E. Dadson
  • Paul B. Farnsworth
  • Richard Vanfleet
  • Jeffrey K. Farrer
  • Matthew R. LinfordEmail author
Research Paper


Here, we report the most comprehensive characterization of nanodiamonds (NDs) yet undertaken. Five different samples from three different vendors were analyzed by a suite of analytical techniques, including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), inductively coupled plasma mass spectrometry (ICP-MS), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Brunauer-Emmett-Teller (BET) surface area measurements, and particle size distribution (PSD) measurements. XPS revealed the elemental compositions of the ND surfaces (83–87 at.% carbon and 12–14 at.% oxygen) with varying amounts of nitrogen (0.4–1.8 at.%), silicon (0.1–0.7 at.%), and tungsten (0.3 at.% only in samples from one vendor). ToF-SIMS and ICP showed metal impurities (Al, Fe, Ni, Cr, etc. with unexpectedly high amounts of W in one vendor’s samples: ca. 900 ppm). Principal component analyses were performed on the ToF-SIMS and ICP data. DRIFT showed key functional groups (–OH, C=O, C–O, and C=C). BET showed surface areas of 50–214 m2/g. XRD and TEM revealed PSD (bimodal distribution and a wide PSD, 5–100 nm, for one vendor’s samples). XRD also provided particle sizes (2.7–27 nm) and showed the presence of graphite. EELS gave the sp2/sp3 contents of the materials (37–88 % sp3). PSD measurements were performed via differential sedimentation of the particles (mean particle size ca. 17–50 nm). This comprehensive understanding should allow for improved construction of nanodiamond-based materials.

Graphical Abstract

Five different nanodiamond samples were exhaustively characterized using a suite of analytical techniques.





This work was supported financially by Diamond Analytics, a US Synthetic Company, Orem, UT, USA. We also acknowledge the Department of Chemistry and Biochemistry and College of Physical and Mathematical Sciences at Brigham Young University for their support of this work. We would like to thank Cody C. Frisby (US Synthetic Corporation) and Anna Nielsen (Brigham Young University) for analyzing the ICP samples.

Compliance with ethical standards

Conflict of interest

Some of the authors on this paper stand to benefit financially from the sale of nanodiamond-containing core-shell HPLC particles that are produced and marketed by Diamond Analytics.

The authors declare no other conflict of interest.

Supplementary material

216_2015_9207_MOESM1_ESM.docx (6.4 mb)
ESM 1 (DOCX 6.44 mb)


  1. 1.
    Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D (2013) Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 31(5):050820CrossRefGoogle Scholar
  2. 2.
    Erickson BE (2008) Nanomaterial characterization. Chem Eng News 15:25–26CrossRefGoogle Scholar
  3. 3.
    Kuchibhatla SVNT, Karakoti AS, Baer DR, Samudrala S, Engelhard MH, Amonette JE, Thevuthasan S, Seal S (2012) Influence of aging and environment on nanoparticle chemistry: implication to confinement effects in nanoceria. J Phys Chem C 116(26):14108–14114CrossRefGoogle Scholar
  4. 4.
    Baer DR, Amonette JE, Engelhard MH, Gaspar DJ, Karakoti AS, Kuchibhatla S, Nachimuthu P, Nurmi JT, Qiang Y, Sarathy V, Seal S, Sharma A, Tratnyek PG, Wang CM (2008) Characterization challenges for nanomaterials. Surf Interface Anal 40(3–4):529–537CrossRefGoogle Scholar
  5. 5.
    Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396(3):983–1002, EnglishCrossRefGoogle Scholar
  6. 6.
    Jensen DS, Kanyal SS, Madaan N, Hancock JM, Dadson AE, Vail MA, Vanfleet R, Shutthanandan V, Zhu ZH, Engelhard MH, Linford MR (2013) Multi-instrument characterization of the surfaces and materials in microfabricated, carbon nanotube-templated thin layer chromatography plates. An analogy to “The Blind Men and the Elephant”. Surf Interface Anal 45(8):1273–1282, EnglishCrossRefGoogle Scholar
  7. 7.
    Wang H, Lunt BM, Gates RJ, Asplund MC, Shutthanandan V, Davis RC, Linford MR (2013) Carbon/ternary alloy/carbon optical stack on mylar as an optical data storage medium to potentially replace magnetic tape. ACS Appl Mater Interfaces 5(17):8407–8413CrossRefGoogle Scholar
  8. 8.
    Nesterenko PN, Fedyanina ON (2010) Properties of microdispersed sintered nanodiamonds as a stationary phase for normal-phase high performance liquid chromatography. J Chromatogr A 1217(4):498–505, EnglishCrossRefGoogle Scholar
  9. 9.
    Nesterenko PN, Fedyanina ON, Volgin YV (2007) Microdispersed sintered nanodiamonds as a new stationary phase for high-performance liquid chromatography. Analyst 132(5):403–405, EnglishCrossRefGoogle Scholar
  10. 10.
    Nesterenko PN, Haddad PR (2010) Diamond-related materials as potential new media in separation science. Anal Bioanal Chem 396(1):205–211, EnglishCrossRefGoogle Scholar
  11. 11.
    Nesterenko PN, Fedyanina ON, Volgin YV, Jones P (2007) Ion chromatographic investigation of the ion-exchange properties of microdisperse sintered nanodiamonds. J Chromatogr A 1155(1):2–7, EnglishCrossRefGoogle Scholar
  12. 12.
    Fedyanina ON, Nesterenko PN (2010) Regularities of chromatographic retention of phenols on microdispersed sintered detonation nanodiamond in aqueous-organic solvents. Russ J Phys Chem A 84(3):476–480, EnglishCrossRefGoogle Scholar
  13. 13.
    Yushin G, Hoffman EN, Barsoum MW, Gogotsi Y, Howell CA, Sandeman SR, Phlllips GJ, Lloyd AW, Mikhalovsky SV (2006) Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials 27(34):5755–5762, EnglishCrossRefGoogle Scholar
  14. 14.
    Saini G, Jensen DS, Wiest LA, Vail MA, Dadson A, Lee ML, Shutthanandan V, Linford MR (2010) Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography. Anal Chem 82(11):4448–4456, EnglishCrossRefGoogle Scholar
  15. 15.
    Saini G, Wiest LA, Herbert D, Biggs KN, Dadson A, Vail MA, Linford MR (2009) C18, C8, and perfluoro reversed phases on diamond for solid-phase extraction. J Chromatogr A 1216(16):3587–3593CrossRefGoogle Scholar
  16. 16.
    Bondar’ VS, Pozdnyakova IO, Puzyr’ AP (2004) Applications of nanodiamonds for separation and purification of proteins. Phys Solid State 46(4):758–760, EnglishCrossRefGoogle Scholar
  17. 17.
    Wiest LA, Jensen DS, Hung CH, Olsen RE, Davis RC, Vail MA, Dadson AE, Nesterenko PN, Linford MR (2011) Pellicular particles with spherical carbon cores and porous nanodiamond/polymer shells for reversed-phase HPLC. Anal Chem 83(14):5488–5501, EnglishCrossRefGoogle Scholar
  18. 18.
    Hung C-H, Wiest LA, Singh B, Diwan A, Valentim MJC, Christensen JM, Davis RC, Miles AJ, Jensen DS, Vail MA, Dadson AE, Linford MR (2013) Improved efficiency of reversed-phase carbon/nanodiamond/polymer core–shell particles for HPLC using carbonized poly(divinylbenzene) microspheres as the core materials. J Sep Sci 36(24):3821–3829CrossRefGoogle Scholar
  19. 19.
    Wiest LA, Jensen DS, Miles AJ, Dadson A, Linford MR (2013) Flare mixed-mode column: B2-agonists and amphetaminesGoogle Scholar
  20. 20.
    Wiest LA, Jensen DS, Miles AJ, Dadson AE, Linford MR (2013) Flare mixed-mode column: triazine herbicidesGoogle Scholar
  21. 21.
    Singh B, Jensen DS, Miles AJ, Dadson AE, Linford MR (2013) Flare mixed-mode column: separation of 2,4-D, MCPA and dicambaGoogle Scholar
  22. 22.
    Singh B, Jensen DS, Miles AJ, Dadson A, Linford MR (2013) Probing the retention mechanism of the flare mixed-mode column at low pH via acidic herbicides with different pKa values diamond analytics application note: DA 1000-C [Internet]Google Scholar
  23. 23.
    Hung CH, Kazarian AA, Dadson A, Paull B, Nesterenko PN, Linford MR (2013) Guidelines for understanding the retention mechanism of diamond analytics flare mixed-mode column. Diamond Analytics Application Note [Internet]Google Scholar
  24. 24.
    Fedyanina ON, Nesterenko PN (2011) Regularities of retention of benzoic acids on microdispersed detonation nanodiamonds in water-methanol mobile phases. Russ J Phys Chem A 85(10):1773–1777, EnglishCrossRefGoogle Scholar
  25. 25.
    Mitev DF, Townsend AT, Paull B, Nesterenko PN (2013) Direct sector field ICP-MS determination of metal impurities in detonation nanodiamond. Carbon 60:326–334, EnglishCrossRefGoogle Scholar
  26. 26.
    Perevedentseva E, Cai PJ, Chiu YC, Cheng CL (2011) Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27(3):1085–1091CrossRefGoogle Scholar
  27. 27.
    Baidakova M, Vul’ A (2007) New prospects and frontiers of nanodiamond clusters. J Phys D Appl Phys 40(20):6300–6311, EnglishCrossRefGoogle Scholar
  28. 28.
    Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1(4):253–257CrossRefGoogle Scholar
  29. 29.
    Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34(1–2):18–74CrossRefGoogle Scholar
  30. 30.
    Spitsyn BV, Davidson JL, Gradoboev MN, Galushko TB, Serebryakova NV, Karpukhina TA, Kulakova II, Melnik NN (2006) Inroad to modification of detonation nanodiamond. Diam Relat Mater 15(2–3):296–299CrossRefGoogle Scholar
  31. 31.
    Yushin GN, Osswald S, VI P, Bogatyreva GP, Gogotsi Y (2005) Effect of sintering on structure of nanodiamond. Diam Relat Mater 14(10):1721–1729, EnglishCrossRefGoogle Scholar
  32. 32.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp(2)/sp(3) carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128(35):11635–11642, EnglishCrossRefGoogle Scholar
  33. 33.
    Shenderova O, Koscheev A, Zaripov N, Petrov I, Skryabin Y, Detkov P, Turner S, Van Tendeloo G (2011) Surface chemistry and properties of ozone-purified detonation nanodiamonds. J Phys Chem C 115(20):9827–9837, EnglishCrossRefGoogle Scholar
  34. 34.
    Saini G, Yang L, Lee ML, Dadson A, Vail MA, Linford MR (2008) Amino-modified diamond as a durable stationary phase for solid-phase extraction. Anal Chem 80(16):6253–6259, EnglishCrossRefGoogle Scholar
  35. 35.
    Yang L, Jensen DS, Vail MA, Dadson A, Linford MR (2010) Direct modification of hydrogen/deuterium-terminated diamond particles with polymers to form reversed and strong cation exchange solid phase extraction sorbents. J Chromatogr A 1217(49):7621–7629, EnglishCrossRefGoogle Scholar
  36. 36.
    Yang L, Vail MA, Dadson A, Lee ML, Asplund MC, Linford MR (2009) Functionalization of deuterium- and hydrogen-terminated diamond particles with mono- and multilayers using di-tert-amyl peroxide and their use in solid phase extraction. Chem Mater 21(19):4359–4365, EnglishCrossRefGoogle Scholar
  37. 37.
    Shenderova O, Panich AM, Moseenkov S, Hens SC, Kuznetsov V, Vieth HM (2011) Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies. J Phys Chem C 115(39):19005–19011, EnglishCrossRefGoogle Scholar
  38. 38.
    Aleksenskii AE, Baidakova MV, Vul’ AY, Siklitskii VI (1999) The structure of diamond nanoclusters. Phys Solid State 41(4):668–671, EnglishCrossRefGoogle Scholar
  39. 39.
    Loktev VF, Makal’skii VI, Stoyanova IV, Kalinkin AV, Likholobov VA, Mit’kin VN (1991) Surface modification of ultradispersed diamonds. Carbon 29(7):817–819CrossRefGoogle Scholar
  40. 40.
    Kruger A, Liang YJ, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem 16(24):2322–2328, EnglishCrossRefGoogle Scholar
  41. 41.
    Huang LCL, Chang HC (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14):5879–5884, EnglishCrossRefGoogle Scholar
  42. 42.
    Shenderova O, Petrov I, Walsh J, Grichko V, Grishko V, Tyler T, Cunningham G (2006) Modification of detonation nanodiamonds by heat treatment in air. Diam Relat Mater 15(11–12):1799–1803, EnglishCrossRefGoogle Scholar
  43. 43.
    Gupta V, Ganegoda H, Engelhard MH, Terry J, Linford MR (2013) Assigning oxidation states to organic compounds via predictions from x-ray photoelectron spectroscopy: a discussion of approaches and recommended improvements. J Chem Educ 91(2):232–238, 2014/02/11CrossRefGoogle Scholar
  44. 44.
    Sherwood PMA (1996) Curve fitting in surface analysis and the effect of background inclusion in the fitting process. J Vac Sci Technol A 14(3):1424–1432CrossRefGoogle Scholar
  45. 45.
    Crist BV (1998) Advanced peak-fitting of monochromatic XPS spectra. J Surf Anal 4(3):428–434Google Scholar
  46. 46.
    Singh B, Velázquez D, Terry J, Linford MR (2014) The equivalent width as a figure of merit for XPS narrow scans. J Electron Spectrosc Relat Phenom 197(0):56–63CrossRefGoogle Scholar
  47. 47.
    Feng J, Sun M, Liu H, Li J, Liu X, Jiang S (2010) Au nanoparticles as a novel coating for solid-phase microextraction. J Chromatogr A 1217(52):8079–8086CrossRefGoogle Scholar
  48. 48.
    Dai W-L, Qiao M-H, Deng J-F (1997) XPS studies on a novel amorphous Ni–Co–W–B alloy powder. Appl Surf Sci 120(1–2):119–124CrossRefGoogle Scholar
  49. 49.
    Eynde XV, Bertrand P (1997) ToF-SIMS quantification of polystyrene spectra based on principal component analysis (PCA). Surf Interface Anal 25(11):878–888CrossRefGoogle Scholar
  50. 50.
    Sanni OD, Wagner MS, Briggs D, Castner DG, Vickerman JC (2002) Classification of adsorbed protein static ToF-SIMS spectra by principal component analysis and neural networks. Surf Interface Anal 33(9):715–728CrossRefGoogle Scholar
  51. 51.
    Yang L, Bennett R, Strum J, Ellsworth B, Hamilton D, Tomlinson M, Wolf R, Housley M, Roberts B, Welsh J, Jackson B, Wood S, Banka C, Thulin C, Linford M (2009) Screening phosphatidylcholine biomarkers in mouse liver extracts from a hypercholesterolemia study using ESI-MS and chemometrics. Anal Bioanal Chem 393(2):643–654, EnglishCrossRefGoogle Scholar
  52. 52.
    Yang L, Lua YY, Jiang GL, Tyler BJ, Linford MR (2005) Multivariate analysis of TOF-SIMS spectra of monolayers on scribed silicon. Anal Chem 77(14):4654–4661, EnglishCrossRefGoogle Scholar
  53. 53.
    Pei L, Jiang G, Tyler BJ, Baxter LL, Linford MR (2008) Time-of-flight secondary ion mass spectrometry of a range of coal samples: a chemometrics (PCA, cluster, and PLS) analysis. Energy Fuel 22(2):1059–1072, EnglishCrossRefGoogle Scholar
  54. 54.
    Lewis D, Cole RJ, Weightman P (1999) Observation of disorder broadening of core photoelectron spectra of CuZn alloys. J Phys Condens Matter 11(43):8431CrossRefGoogle Scholar
  55. 55.
    Kulakova II (2004) Surface chemistry of nanodiamonds. Phys Solid State 46(4):636–643, PubMed PMID: WOS:000220876600010. EnglishCrossRefGoogle Scholar
  56. 56.
    Silverstein RM, Webster FX, Kiemle DJ (2005). Spectrometric identification of organic compounds, 7th edn. WileyGoogle Scholar
  57. 57.
    Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259, PubMed PMID: WOS:000082534400008. EnglishCrossRefGoogle Scholar
  58. 58.
    West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217(19):3201–3216, PubMed PMID: WOS:000277757100005. EnglishCrossRefGoogle Scholar
  59. 59.
    Berger SD, McKenzie DR, Martin PJ (1988) EELS analysis of vacuum arc-deposited diamond-like films. Philos Mag Lett 57(6):285–290CrossRefGoogle Scholar
  60. 60.
    Bernier N, Bocquet F, Allouche A, Saikaly W, Brosset C, Thibault J, Charaï A (2008) A methodology to optimize the quantification of sp2 carbon fraction from K edge EELS spectra. J Electron Spectrosc Relat Phenom 164(1–3):34–43CrossRefGoogle Scholar
  61. 61.
    Cuomo JJ, Doyle JP, Bruley J, Liu JC (1991) Sputter deposition of dense diamond-like carbon films at low temperature. Appl Phys Lett 58(5):466–468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bhupinder Singh
    • 1
  • Stacey J. Smith
    • 1
  • David S. Jensen
    • 2
  • Hodge F. Jones
    • 3
  • Andrew E. Dadson
    • 2
  • Paul B. Farnsworth
    • 1
  • Richard Vanfleet
    • 4
  • Jeffrey K. Farrer
    • 4
  • Matthew R. Linford
    • 1
    Email author
  1. 1.Department of Chemistry and Biochemistry, C100 Benson Science BuildingBrigham Young UniversityProvoUSA
  2. 2.Diamond AnalyticsOremUSA
  3. 3.Advanced Abrasives CorporationPennsaukenUSA
  4. 4.Department of Physics and AstronomyBrigham Young UniversityProvoUSA

Personalised recommendations