Skip to main content

Advertisement

Log in

Initial diagnosis of chronic myelogenous leukemia based on quantification of M-BCR status using droplet digital PCR

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Formed from a reciprocal translocation t(9:22)(q34;q11) of genetic material between the long arms of human chromosomes 9 and 22, the constitutively active breakpoint cluster region (BCR) Abelson 1 (ABL) tyrosine kinase BCR-ABL is known to be causative of chronic myelogenous leukemia (CML). In 98 % of CML patients harboring the t(9:22)(q34;q11) translocation, known as the Philadelphia chromosome, the chimeric BCR-ABL oncogene is created through cleavage of the BCR gene within its major breakpoint region (M-BCR) and breakage of the ABL gene within a 100-kbp region downstream of exon 2a. Clinical detection of the fused BCR-ABL oncogene currently relies on direct visualization by fluorescence in situ hybridization (FISH), a relatively tedious assay that typically offers a detection limit of ca. 2 %. Here, we describe a novel assay that uses droplet digital PCR (ddPCR) technology to reliably measure M-BCR status and the presence of BCR-ABL. When applied to cell-line models of CML, the assay accurately quantifies BCR-ABL frequency to a detection limit of 0.25 %. It therefore offers improved specificity relative to FISH, and may allow identification of variant translocation patterns, including derivative chromosome 9 deletions.

A new assay based on droplet digital PCR is described for highly sensitive detection and quantification of the BCR-ABL1 t(9:22)(q34;q11) reciprocal translation that is causative of chronic myelogenous leukemia

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. KU812 (60,XYY,−2,−3,add(4)(p11),−5,+6,−7,+8,−9,t(9;22)(q34;q11.2)x2,−10,i(11)(q10),−12,−16, del(17)(q11.2q24),i(17)(q10),−18,+19,−20,−22.ish del(17)(TP53+),add(4) (p11)(wcp4)(18)/60, sl,+19)

  2. K562 (67∼70,XX,−X,add(2)(q3?3),−3,+5,add(5)(q11.2),ins(6;?)(p21;?),+7,der(7)t(7;7) (p1?1.1;q22), −9,del(9)(p13), der(9)t(9;9)(p1?3;q22), der(10)t(3;10)(p21;q2?3),−13, add(13)(p11.2),−14,+17,der(17) t(10;17)(q11.2;q11.2)der(10)t(3;10),der(17)t(17;20) (p11.2;p11.2),+19,−20,?der(21)t(1;21) (q21;p11.1),−22,+4mar.ish add(2) (BCR+,ABL1+,BCR con ABL1x1), add(5)(D5S23+,EGR1−), der(9)t(9;9) (ABL1++),der(17)t(17;20) (TP53−), der(17)t(10;17)der(10)t(3;10)(p53+),mar1(BCR+,ABL1+,BCR con ABL1++++), mar2(BCR+,ABL1+,BCR con ABL1++++)[cp7])

  3. MEG01 (97∼100<4n>,XX,−Y,−Y,−1,der(1)t(1;2)(p21;q21), der(2;14)(q10;q10)x2,+6,+6,−7,+8, +8,add(8)(p13),−9,t(9;22)(q34;q11.2)x3,−10,−10,−10,add(10)(p12),+11,del(11)(q13q23)x2,−12,−13,−13, add(13)(q34),+17,+19,+19,+19,+19,+19, add(19)(p13.1)x2,add(19)(q13.1),+21,+21,−22,+der(22)t(9;22), +9mar[cp8])

References

  1. Zhang Y, Rowley JD (2011) Chronic myeloid leukemia: current perspectives. Clin Lab Med 31(4):687–698. doi:10.1016/j.cll.2011.08.012

    Article  CAS  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: Cancer J Clin 61(2):69–90

    Google Scholar 

  3. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667. doi:10.1056/NEJMoa040258

    Article  CAS  Google Scholar 

  4. Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C (2003) Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17(7):1211–1262. doi:10.1038/sj.leu.2402912

    Article  CAS  Google Scholar 

  5. Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7(6):441–453. doi:10.1038/nrc2147

    Article  CAS  Google Scholar 

  6. Melo JV, Ross DM (2011) Minimal residual disease and discontinuation of therapy in chronic myeloid leukemia: can we aim at a cure? Hematol / Educ Progr Am Soc Hematol Am Soc Hematol Educ Prog 2011:136–142. doi:10.1182/asheducation-2011.1.136

    Article  Google Scholar 

  7. Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simoes MA, Kreil S, Ward D, Hidalgo-Curtis C, Melo JV, Wiemels J, Nadel B, Cross NC, Grand FH (2010) Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia 24(10):1742–1750. doi:10.1038/leu.2010.174

    Article  CAS  Google Scholar 

  8. Shepherd P, Suffolk R, Halsey J, Allan N (1995) Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukaemia: no correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br J Haematol 89(3):546–554

    Article  CAS  Google Scholar 

  9. Huntly BJP (2001) Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 98(6):1732–1738. doi:10.1182/blood.V98.6.1732

    Article  CAS  Google Scholar 

  10. Huntly BJP (2002) Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCR expression, elevated BCR-ABL levels, or karyotypic instability. Blood 99(12):4547–4553. doi:10.1182/blood.V99.12.4547

    Article  CAS  Google Scholar 

  11. Melo JV, Deininger MW (2004) Biology of chronic myelogenous leukemia—signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 18(3):545–568. doi:10.1016/j.hoc.2004.03.008, vii-viii

    Article  Google Scholar 

  12. Claire OC (2008) Fluorescence in situ hybridization (FISH), cytogenetics can now go “FISH-ing” for chromosomal abnormalities, which are deletions an duplications that can cause disease. How exactly does FISH work? Nature Education, Chromosomes and Cytogenetics 1(1):1–8

  13. Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3(10):769–778. doi:10.1038/nrg905

    Article  Google Scholar 

  14. Tkachuk DC, Westbrook CA, Andreeff M, Donlon TA, Cleary ML, Suryanarayan K, Homge M, Redner A, Gray J, Pinkel D (1990) Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Sci (N Y, NY) 250(4980):559–562

    Article  CAS  Google Scholar 

  15. Nashed AL, Rao KW, Gulley ML (2003) Clinical applications of BCR-ABL molecular testing in acute leukemia. J Mol Diagn 5(2):63–72. doi:10.1016/s1525-1578(10)60454-0

    Article  CAS  Google Scholar 

  16. Das K, Tan P (2013) Molecular cytogenetics: recent developments and applications in cancer. Clin Genet 84(4):315–325. doi:10.1111/cge.12229

    Article  CAS  Google Scholar 

  17. Wolff DJ, Bagg A, Cooley LD, Dewald GW, Hirsch BA, Jacky PB, Rao KW, Rao PN (2007) Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn 9(2):134–143. doi:10.2353/jmoldx.2007.060128

    Article  CAS  Google Scholar 

  18. Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136(4):527–539. doi:10.1309/ajcpr1svt1vhugxw

    Article  CAS  Google Scholar 

  19. Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 11(3):333–343. doi:10.1586/erm.11.3

    Google Scholar 

  20. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer J Int Cancer 126(5):1166–1176. doi:10.1002/ijc.24827

    CAS  Google Scholar 

  21. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198. doi:10.1016/j.ccr.2006.01.025

    Article  CAS  Google Scholar 

  22. Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, Pusch S, Mechtersheimer G, Zentgraf H, von Deimling A (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122(1):11–19. doi:10.1007/s00401-011-0841-z

    Article  CAS  Google Scholar 

  23. Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, Hong DS, Naing A, Falchook GS, Moroney JW, Piha-Paul SA, Wheler JJ, Moulder SL, Fu S, Kurzrock R (2011) PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer Ther 10(3):558–565. doi:10.1158/1535-7163.mct-10-0994

    Article  CAS  Google Scholar 

  24. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8(5):329–340. doi:10.1038/nrc2375

    Article  CAS  Google Scholar 

  25. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, DiPersio JF, Wilson RK, Ley TJ (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066. doi:10.1056/NEJMoa0903840

    Article  CAS  Google Scholar 

  26. Weir B, Zhao X, Meyerson M (2004) Somatic alterations in the human cancer genome. Cancer Cell 6(5):433–438. doi:10.1016/j.ccr.2004.11.004

    Article  CAS  Google Scholar 

  27. van Eijk R, Licht J, Schrumpf M, Talebian Yazdi M, Ruano D, Forte GI, Nederlof PM, Veselic M, Rabe KF, Annema JT, Smit V, Morreau H, van Wezel T (2011) Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One 6(3), e17791. doi:10.1371/journal.pone.0017791

    Article  CAS  Google Scholar 

  28. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905. doi:10.1038/nature08822

    Article  CAS  Google Scholar 

  29. Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, Carter SL, Russ C, Nusbaum C, Meyerson M, Lander ES (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103. doi:10.1038/nmeth.1276

    Article  CAS  Google Scholar 

  30. Lee J, Seo JW, Jun HJ, Ki CS, Park SH, Park YS, Lim HY, Choi MG, Bae JM, Sohn TS, Noh JH, Kim S, Jang HL, Kim JY, Kim KM, Kang WK, Park JO (2011) Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol Rep 25(6):1517–1524. doi:10.3892/or.2011.1219

    CAS  Google Scholar 

  31. Berggren P, Kumar R, Sakano S, Hemminki L, Wada T, Steineck G, Adolfsson J, Larsson P, Norming U, Wijkstrom H, Hemminki K (2003) Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res: Off J Am Assoc Cancer Res 9(1):235–242

    CAS  Google Scholar 

  32. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, Girsberger S, Lehmann T, Passweg J, Stern M, Beisel C, Kralovics R, Skoda RC (2014) Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123(14):2220–2228. doi:10.1182/blood-2013-11-537167

    Article  CAS  Google Scholar 

  33. Mathews J, Duncavage EJ, Pfeifer JD (2013) Characterization of translocations in mesenchymal hamartoma and undifferentiated embryonal sarcoma of the liver. Exp Mol Pathol 95(3):319–324. doi:10.1016/j.yexmp.2013.09.006

    Article  CAS  Google Scholar 

  34. Grossmann V, Kohlmann A, Klein HU, Schindela S, Schnittger S, Dicker F, Dugas M, Kern W, Haferlach T, Haferlach C (2011) Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia 25(4):671–680. doi:10.1038/leu.2010.309

    Article  CAS  Google Scholar 

  35. Hochhaus A, Baccarani M, Deininger M, Apperley JF, Lipton JH, Goldberg SL, Corm S, Shah NP, Cervantes F, Silver RT, Niederwieser D, Stone RM, Dombret H, Larson RA, Roy L, Hughes T, Muller MC, Ezzeddine R, Countouriotis AM, Kantarjian HM (2008) Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 22(6):1200–1206. doi:10.1038/leu.2008.84

    Article  CAS  Google Scholar 

  36. Branford S, Hughes T (2006) Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Methods Mol Med 125:69–92

    CAS  Google Scholar 

  37. Jennings LJ, George D, Czech J, Yu M, Joseph L (2014) Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn 16(2):174–179. doi:10.1016/j.jmoldx.2013.10.007

    Article  CAS  Google Scholar 

  38. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3):172–183. doi:10.1038/nrc1567

    Article  CAS  Google Scholar 

  39. Baxter EJ, Hochhaus A, Bolufer P, Reiter A, Fernandez JM, Senent L, Cervera J, Moscardo F, Sanz MA, Cross NC (2002) The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum Mol Genet 11(12):1391–1397

    Article  CAS  Google Scholar 

  40. Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC, Van Etten RA (2004) Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell 5(3):287–298

    Article  CAS  Google Scholar 

  41. Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL, Koduru P, Brody JP, Hawson G, Rodwell R, Doody ML, Carnicero F, Reiter A, Goldman JM, Melo JV, Cross NC (2001) The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 98(13):3778–3783

    Article  CAS  Google Scholar 

  42. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. doi:10.1021/ac202028g

    Article  CAS  Google Scholar 

  43. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005. doi:10.1038/nmeth.2633, http://www.nature.com/nmeth/journal/v10/n10/abs/nmeth.2633.html-supplementary-information

    Article  CAS  Google Scholar 

  44. Cochran RL, Cravero K, Chu D, Erlanger B, Toro PV, Beaver JA, Zabransky DJ, Wong HY, Cidado J, Croessmann S (2014) Analysis of BRCA2 loss of heterozygosity in tumor tissue using droplet digital polymerase chain reaction. Hum Pathol 45(7):1546–1550

    Article  CAS  Google Scholar 

  45. Heredia NJ, Belgrader P, Wang S, Koehler R, Regan J, Cosman AM, Saxonov S, Hindson B, Tanner SC, Brown AS (2013) Droplet Digital™ PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods 59(1):S20–S23

    Article  CAS  Google Scholar 

  46. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40(11), e82. doi:10.1093/nar/gks203

    Article  CAS  Google Scholar 

  47. Sanders R, Mason DJ, Foy CA, Huggett JF (2013) Evaluation of digital PCR for absolute RNA quantification. PLoS One 8(9), e75296. doi:10.1371/journal.pone.0075296

    Article  CAS  Google Scholar 

  48. Pekin D, Skhiri Y, Baret J-C, Le Corre D, Mazutis L, Salem CB, Millot F, El Harrak A, Hutchison JB, Larson JW (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166

    Article  CAS  Google Scholar 

  49. Wang J, Ramakrishnan R, Tang Z, Fan W, Kluge A, Dowlati A, Jones RC, Ma PC (2010) Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin Chem 56(4):623–632. doi:10.1373/clinchem.2009.134973

    Article  CAS  Google Scholar 

  50. Roberts CH, Jiang W, Jayaraman J, Trowsdale J, Holland MJ, Traherne JA (2014) Killer-cell immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR. Genome Med 6(3):20. doi:10.1186/gm537

    Article  CAS  Google Scholar 

  51. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84(2):1003–1011. doi:10.1021/ac202578x

    Article  CAS  Google Scholar 

  52. Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie KR (2009) Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem 394(2):457–467

    Article  CAS  Google Scholar 

  53. Shuga J, Zeng Y, Novak R, Lan Q, Tang X, Rothman N, Vermeulen R, Li L, Hubbard A, Zhang L, Mathies RA, Smith MT (2013) Single molecule quantitation and sequencing of rare translocations using microfluidic nested digital PCR. Nucleic Acids Res 41(16), e159. doi:10.1093/nar/gkt613

    Article  CAS  Google Scholar 

  54. Kishi K (1985) A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res 9(3):381–390

    Article  CAS  Google Scholar 

  55. Ross DM, Schafranek L, Hughes TP, Nicola M, Branford S, Score J (2009) Genomic translocation breakpoint sequences are conserved in BCR-ABL1 cell lines despite the presence of amplification. Cancer Genet Cytogenet 189(2):138–139. doi:10.1016/j.cancergencyto.2008.10.010

    Article  CAS  Google Scholar 

  56. Virgili A, Nacheva EP (2010) Genomic amplification of BCR/ABL1 and a region downstream of ABL1 in chronic myeloid leukaemia: a FISH mapping study of CML patients and cell lines. Mol Cytogenet 3:15. doi:10.1186/1755-8166-3-15

    Article  CAS  Google Scholar 

  57. Gahmberg CG, Jokinen M, Andersson LC (1979) Expression of the major red cell sialoglycoprotein, glycophorin A, in the human leukemic cell line K562. J Biol Chem 254(15):7442–7448

    CAS  Google Scholar 

  58. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334

    CAS  Google Scholar 

  59. Naumann S, Reutzel D, Speicher M, Decker HJ (2001) Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res 25(4):313–322

    Article  CAS  Google Scholar 

  60. Gribble SM, Roberts I, Grace C, Andrews KM, Green AR, Nacheva EP (2000) Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet Cytogenet 118(1):1–8

    Article  CAS  Google Scholar 

  61. Brazma DV, Grace A, Howard C, Chanalaris J, Melo A, Apperley JV, Nacheva JF, EP (2010) When is a double Philadelphia not a double Philadelphia. Poster, Leukemia Research

  62. Burke BA, Carroll M (2010) BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 24(6):1105–1112. doi:10.1038/leu.2010.67

    Article  CAS  Google Scholar 

  63. Ogura M, Morishima Y, Ohno R, Kato Y, Hirabayashi N, Nagura H, Saito H (1985) Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66(6):1384–1392

    CAS  Google Scholar 

  64. Gribble SM, Reid AG, Roberts I, Grace C, Green AR, Nacheva EP (2003) Genomic imbalances in CML blast crisis: 8q24.12-q24.13 segment identified as a common region of over-representation. Genes, Chromosomes Cancer 37(4):346–358. doi:10.1002/gcc.10173

    Article  CAS  Google Scholar 

  65. Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8), e2876. doi:10.1371/journal.pone.0002876

    Article  CAS  Google Scholar 

  66. Dancis BM (1978) Shear breakage of DNA. Biophys J 24(2):489–503. doi:10.1016/s0006-3495(78)85396-x

    Article  CAS  Google Scholar 

  67. Bowman RD, Davidson N (1972) Hydrodynamic shear breakage of DNA. Biopolymers 11(12):2601–2624. doi:10.1002/bip.1972.360111217

    Article  CAS  Google Scholar 

  68. Brisco MJ, Latham S, Bartley PA, Morley AA (2010) Incorporation of measurement of DNA integrity into qPCR assays. Biotechniques 49(6):893–897. doi:10.2144/000113567

    Article  CAS  Google Scholar 

  69. Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3(9):2303–2308

    Article  CAS  Google Scholar 

  70. Brown AM (2001) A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput Methods Prog Biomed 65(3):191–200

    Article  CAS  Google Scholar 

  71. Bowen WP, Jerman JC (1995) Nonlinear regression using spreadsheets. Trends Pharmacol Sci 16(12):413–417

    Article  CAS  Google Scholar 

  72. Trypsteen W, Vynck M, De Neve J, Bonczkowski P, Kiselinova M, Malatinkova E, Vervisch K, Thas O, Vandekerckhove L, De Spiegelaere W (2015) ddpcRquant: threshold determination for single channel droplet digital PCR experiments. Anal Bioanal Chem 407(19):5827–5834

    Article  CAS  Google Scholar 

  73. Gonzalez FA, Anguita E, Mora A, Asenjo S, Lopez I, Polo M, Villegas A (2001) Deletion of BCR region 3′ in chronic myelogenous leukemia. Cancer Genet Cytogenet 130(1):68–74

    Article  CAS  Google Scholar 

  74. Taly V, Pekin D, El Abed A, Laurent-Puig P (2012) Detecting biomarkers with microdroplet technology. Trends Mol Med 18(7):405–416

    Article  CAS  Google Scholar 

  75. McCaughan F, Dear PH (2010) Single-molecule genomics. J Pathol 220(2):297–306

    CAS  Google Scholar 

  76. Yung TK, Chan KA, Mok TS, Tong J, To K-F, Lo YD (2009) Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 15(6):2076–2084

    Article  CAS  Google Scholar 

  77. Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, Spina CA, Woelk CH, Richman DD (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8(4), e55943

    Article  CAS  Google Scholar 

  78. Hayden R, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, Caliendo A (2013) Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol 51(2):540–546

    Article  CAS  Google Scholar 

  79. Herens C, Tassin F, Lemaire V, Beguin Y, Collard E, Lampertz S, Croisiau C, Lecomte M, De Prijk B, Longree L, Koulischer L (2000) Deletion of the 5′-ABL region: a recurrent anomaly detected by fluorescence in situ hybridization in about 10% of Philadelphia-positive chronic myeloid leukaemia patients. Br J Haematol 110(1):214–216

    Article  CAS  Google Scholar 

  80. Sinclair PB, Nacheva EP, Leversha M, Telford N, Chang J, Reid A, Bench A, Champion K, Huntly B, Green AR (2000) Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 95(3):738–743

    CAS  Google Scholar 

  81. Kolomietz E (2001) Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 97(11):3581–3588. doi:10.1182/blood.V97.11.3581

    Article  CAS  Google Scholar 

  82. Cohen N, Rozenfeld-Granot G, Hardan I, Brok-Simoni F, Amariglio N, Rechavi G, Trakhtenbrot L (2001) Subgroup of patients with Philadelphia-positive chronic myelogenous leukemia characterized by a deletion of 9q proximal to ABL gene: expression profiling, resistance to interferon therapy, and poor prognosis. Cancer Genet Cytogenet 128(2):114–119

    Article  CAS  Google Scholar 

  83. Dewald GW, Wyatt WA, Silver RT (1999) Atypical BCR and ABL D-FISH patterns in chronic myeloid leukemia and their possible role in therapy. Leuk Lymphoma 34(5-6):481–491. doi:10.3109/10428199909058475

    CAS  Google Scholar 

  84. Morel F, Ka C, Le Bris MJ, Herry A, Morice P, Bourquard P, Abgrall JF, Berthou C, De Braekeleer M (2003) Deletion of the 5′ abl region in Philadelphia chromosome-positive chronic myeloid leukemia. Leukemia 17(2):473–474. doi:10.1038/sj.leu.2402816

    Article  CAS  Google Scholar 

  85. Markovic VD, Bouman D, Bayani J, Al-Maghrabi J, Kamel-Reid S, Squire JA (2000) Lack of BCR/ABL reciprocal fusion in variant Philadelphia chromosome translocations: a use of double fusion signal FISH and spectral karyotyping. Leukemia 14(6):1157–1160

    Article  CAS  Google Scholar 

  86. Mohr B, Bornhauser M, Platzbecker U, Freiberg-Richter J, Naumann R, Prange-Krex G, Mohm J, Kroschinsky F, Ehninger G, Thiede C (2001) Problems with interphase fluorescence in situ hybridization in detecting BCR/ABL-positive cells in some patients using a novel technique with extra signals. Cancer Genet Cytogenet 127(2):111–117

    Article  CAS  Google Scholar 

  87. Fournier M, Lacrosse S, Jamar M, Bours V, Herens C (2005) Deletions of the 3’BCR and 5’ABL regions in patients with Philadelphia-positive chronic myeloid leukemia: a one-step process occurring in about 10% of the cases without any evidence of genetic instability in the target cells. Cancer Genet Cytogenet 160(2):184–187. doi:10.1016/j.cancergencyto.2005.01.002

    Article  CAS  Google Scholar 

  88. Milbury CA, Zhong Q, Lin J, Williams M, Olson J, Link DR, Hutchison B (2014) Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quant 1(1):8–22

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Institutes of Health Research (CIHR), and Genome BC. C. Haynes receives salary support as a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Haynes.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lund, H.L., Hughesman, C.B., McNeil, K. et al. Initial diagnosis of chronic myelogenous leukemia based on quantification of M-BCR status using droplet digital PCR. Anal Bioanal Chem 408, 1079–1094 (2016). https://doi.org/10.1007/s00216-015-9204-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9204-2

Keywords

Navigation