Skip to main content
Log in

An in vitro metabolomics approach to identify hepatotoxicity biomarkers in human L02 liver cells treated with pekinenal, a natural compound

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An in vitro cell metabolomics study was performed on human L02 liver cells to investigate the toxic biomarkers of pekinenal from the herb Euphorbia pekinensis Rupr. Pekinenal significantly induced L02 cell damage, which was characterised by necrosis and apoptosis. Metabolomics combined with data pattern recognition showed that pekinenal significantly altered the profiles of more than 1299 endogenous metabolites with variable importance in the projection (VIP) > 1. Further, screening correlation coefficients between the intensities of all metabolites and the extent of L02 cell damage (MTT) identified 12 biomarker hits: ten were downregulated and two were upregulated. Among these hits, LysoPC(18:1(9Z)/(11Z)), PC(22:0/15:0) and PC(20:1(11Z)/14:1(9Z)) were disordered, implying the initiation of inflammation and cell damage. Several fatty acids (FAs) (3-hydroxytetradecanedioic acid, pivaloylcarnitine and eicosapentaenoyl ethanolamide) decreased due to fatty acid oxidation. Dihydroceramide and Cer(d18:0/14:0) were also altered and are associated with apoptosis. Additional examination of the levels of intracellular reactive oxygen species (ROS) and two eicosanoids (PGE2, PGF2α) in the cell supernatant confirmed the fatty acid oxidation and arachidonic acid metabolism pathways, respectively. In summary, cell metabolomics is a highly efficient approach for identifying toxic biomarkers and helping understand toxicity mechanisms and predict herb-induced liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate transaminase

BPI:

Base peak intensity

CoA:

Coenzyme A

COX:

Cyclooxygenase

cPLA2:

Cytosolic phospholipase A2

CS:

Ceramide synthase

DCFH-DA:

2′,7′-Dichlorofluorescin diacetate

DHCer:

Dihydroceramide

DILI:

Drug-induced liver injury

DMEM:

Dulbecco’s modified eagle medium

DMSO:

Dimethyl sulfoxide

EPEA:

Eicosapentaenoyl ethanolamide

ER:

Endoplasmic reticulum

ESI:

Electrospray ionisation

FAs:

Fatty acids

FBS:

Fetal bovine serum

LPL:

Lipoprotein lipase

LysoPCs:

Lysophosphatidylcholines

MRM:

Multiple reaction monitoring

OPLS-DA:

Orthogonal projection to latent structure discriminate analysis

PCs:

Phosphatidylcholines

PLS-DA:

Partial least squares discriminant analysis

PPARα :

Peroxisome proliferator-activated receptor alpha

ROS:

Reactive oxygen species

S-plot:

Similarity plot

UPLC-QTOF/MS:

Ultra-performance liquid chromatography-quadrupole time of flight/mass spectrometry

UPLC-TQ/MS:

Ultra-performance liquid chromatography-triple quadrupole/mass spectrometry

VIP:

Variable importance in the projection

References

  1. Stickel F, Seitz HK (2000) The efficacy and safety of comfrey. Public Health Nutr 3:501–508. doi:10.1017/S1368980000000586

    CAS  Google Scholar 

  2. Kaplowitz N, DeLeve LD (2013) Drug-induced liver disease. Elsevier, Amsterdam

    Google Scholar 

  3. Jung KA, Min HJ, Yoo SS, Kim HJ, Choi SN, Ha CY, Kim HJ, Kim TH, Jung WT, Lee OJ, Lee JS, Shim SG (2011) Drug-induced liver injury: twenty five cases of acute hepatitis following ingestion of polygonum multiflorum Thunb. Gut Liver 5:493–499. doi:10.5009/gnl.2011.5.4.493

    Article  Google Scholar 

  4. Huang WQ, Luo Y (2004) Influence of licorice root and Peking euphorbia root in combination on functions and pathological morphology of the heart, liver and kidney in rats. Chin J Clin Rehabil 8:6804–6805

    Google Scholar 

  5. O’Connell TM, Watkins PB (2010) The application of metabonomics to predict drug-induced liver injury. Clin Pharmacol Ther 88:394–399. doi:10.1038/clpt.2010.151

    Article  Google Scholar 

  6. Nicholson JK, Wilson ID (2003) Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676. doi:10.1038/nrd1157

    Article  CAS  Google Scholar 

  7. Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL (2007) A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29:99–108. doi:10.1152/physiolgenomics.00194.2006

    Article  CAS  Google Scholar 

  8. Tao W, Duan J, Tang Y, Yang N, Li J, Qian Y (2013) Casbane diterpenoids from the roots of euphorbia pekinensis. Phytochemistry 94:249–253. doi:10.1016/j.phytochem.2013.06.009

    Article  CAS  Google Scholar 

  9. Su S, Duan J, Wang P, Liu P, Guo J, Shang E, Qian D, Tang Y, Tang Z (2013) Metabolomic study of biochemical changes in the plasma and urine of primary dysmenorrhea patients using UPLC-MS coupled with a pattern recognition approach. J Proteome Res 12:852–865. doi:10.1021/pr300935x

    Article  CAS  Google Scholar 

  10. Martano G, Delmotte N, Kiefer P, Christen P, Kentner D, Bumann D, Vorholt JA (2015) Fast sampling method for mammalian cell metabolic analyses using liquid chromatography-mass spectrometry. Nat Protoc 10:1–11. doi:10.1038/nprot.2014.198

    Article  CAS  Google Scholar 

  11. Hsu F, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:587–600. doi:10.1016/S1044-0305(99)00035-5

    Article  CAS  Google Scholar 

  12. Liu-Wu Y, Hurt-Camejo E, Wiklund O (1998) Lysophosphatidylcholine induces the production of IL-1beta by human monocytes. Atherosclerosis 137:351–357. doi:10.1016/S0021-9150(97)00295-5

    Article  CAS  Google Scholar 

  13. Matsumoto M, Kuhara T, Inoue Y, Shinka T, Matsumoto I (1991) Abnormal fatty acid metabolism in patients in hopantenate therapy during clinical episodes. J Chromatog B 562:139–145. doi:10.1016/0378-4347(91)80572-T

    Article  CAS  Google Scholar 

  14. Chen K, Cheng M, Jing Y, Chiu DT, Shiao M, Chen J (2011) Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 301:E853–E863. doi:10.1152/ajpendo.00048.2011

    Article  CAS  Google Scholar 

  15. Brass EP (2002) Pivalate-generating prodrugs and carnitine homeostasis in man. Pharmacol Rev 54:589–598. doi:10.1124/pr.54.4.589

    Article  CAS  Google Scholar 

  16. Nakajima Y, Ito T, Maeda Y, Ichiki S, Sugiyama N, Mizuno M, Makino Y, Sugiura T, Kurono Y, Togari H (2010) Detection of pivaloylcarnitine in pediatric patients with hypocarnitinemia after long-term administration of pivalate-containing antibiotics. Tohoku J Exp Med 221:309–313. doi:10.1620/tjem.221.309

    Article  CAS  Google Scholar 

  17. Stiban J, Fistere D, Colombini M (2006) Dihydroceramide hinders ceramide channel formation: implications on apoptosis. Apoptosis 11:773–780. doi:10.1007/s10495-006-5882-8

    Article  CAS  Google Scholar 

  18. Soriano JM, González L, Catalá AI (2005) Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B. Prog Lipid Res 44:345–356. doi:10.1016/j.plipres.2005.09.001

    Article  CAS  Google Scholar 

  19. Hu W, Xu R, Zhang G, Jin J, Szulc ZM, Bielawski J, Hannun YA, Obeid LM, Mao C (2005) Golgi fragmentation is associated with ceramide-induced cellular effects. Mol Biol Cell 16:1555–1567. doi:10.1091/mbc.E04-07-0594

    Article  CAS  Google Scholar 

  20. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588. doi:10.1016/j.jnutbio.2005.12.001

    Article  CAS  Google Scholar 

  21. Yao W, Gu H, Zhu J, Barding G, Cheng H, Bao B, Zhang L, Ding A, Li W (2014) Integrated plasma and urine metabolomics coupled with HPLC/QTOF-MS and chemometric analysis on potential biomarkers in liver injury and hepatoprotective effects of Er-Zhi-Wan. Anal Bioanal Chem 406:7367–7378. doi:10.1007/s00216-014-8169-x

    Article  CAS  Google Scholar 

  22. Bohgaki M, Tsukiyama T, Nakajima A, Maruyama S, Watanabe M, Koike T, Hatakeyama S (2008) Involvement of Ymer in suppression of NF-κB activation by regulated interaction with lysine-63-linked polyubiquitin chain. Biochim Biophys Acta 1783:826–837. doi:10.1016/j.bbamcr.2007.09.006

    Article  CAS  Google Scholar 

  23. Miura D, Tanaka H, Wariishi H (2004) Metabolomic differential display analysis of the white-rot basidiomycete Phanerochaete chrysosporium grown under air and 100% oxygen. FEMS Microbiol Lett 234:111–116. doi:10.1111/j.1574-6968.2004.tb09521.x

    Article  CAS  Google Scholar 

  24. Madsen RK, Lundstedt T, Gabrielsson J, Sennbro C, Alenius G, Moritz T, Rantapää-Dahlqvist S, Trygg J (2011) Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res Ther 13:R19. doi:10.1186/ar3243

    Article  Google Scholar 

  25. Mattes W, Davis K, Fabian E, Greenhaw J, Herold M, Looser R, Mellert W, Groeters S, Marxfeld H, Moeller N, Montoya-Parra G, Prokoudine A, van Ravenzwaay B, Strauss V, Walk T, Kamp H (2014) Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma. Toxicol Lett 230:467–478. doi:10.1016/j.toxlet.2014.07.021

    Article  CAS  Google Scholar 

  26. Wang J, Pu S, Sun Y, Li Z, Niu M, Yan X, Zhao Y, Wang L, Qin X, Ma Z, Zhang Y, Li B, Luo S, Gong M, Sun Y, Zou Z, Xiao X (2014) Metabolomic profiling of autoimmune hepatitis: the diagnostic utility of nuclear magnetic resonance spectroscopy. J Proteome Res 13:3792–3801. doi:10.1021/pr500462f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is supported by National Basic Research Program of China (973 Program) (2011CB505300, 2011CB505303), National Natural Science Foundation of China (81274199, 81102762, 30901894 and 81403041), Open Fund of Collaborative Innovation Center of Chinese Medicinal Resources Industrialization (ZDXM-1-14), Six talent peaks project in Jiangsu Province (YY-015),the Natural Science Foundation of Jiangsu Province (BK20140961) and a project founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyue Ma or Jin’ao Duan.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest, either real or potential, associated with this work.

Additional information

Jiexia Shi and Jing Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Zhou, J., Ma, H. et al. An in vitro metabolomics approach to identify hepatotoxicity biomarkers in human L02 liver cells treated with pekinenal, a natural compound. Anal Bioanal Chem 408, 1413–1424 (2016). https://doi.org/10.1007/s00216-015-9202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9202-4

Keywords

Navigation