Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 2, pp 345–349 | Cite as

Can we use high precision metal isotope analysis to improve our understanding of cancer?

  • Fiona Larner
Trends
Part of the following topical collections:
  1. Applications of Isotopes in Analytical Ecogeochemistry

Abstract

High precision natural isotope analyses are widely used in geosciences to trace elemental transport pathways. The use of this analytical tool is increasing in nutritional and disease-related research. In recent months, a number of groups have shown the potential this technique has in providing new observations for various cancers when applied to trace metal metabolism. The deconvolution of isotopic signatures, however, relies on mathematical models and geochemical data, which are not representative of the system under investigation. In addition to relevant biochemical studies of protein–metal isotopic interactions, technological development both in terms of sample throughput and detection sensitivity of these elements is now needed to translate this novel approach into a mainstream analytical tool. Following this, essential background healthy population studies must be performed, alongside observational, cross-sectional disease-based studies. Only then can the sensitivity and specificity of isotopic analyses be tested alongside currently employed methods, and important questions such as the influence of cancer heterogeneity and disease stage on isotopic signatures be addressed.

Graphical Abstract

High precision isotopic analyses have recently been applied to cancer research in an attempt to provide diagnostic tools and improve understanding of the disease. Is there a future for this approach?

Keywords

MC-ICP-MS Stable isotopes Transition metals Metal–protein interactions Cancer Interdisciplinary 

Notes

Acknowledgments

This work was supported by European Research Council Advanced Fellowship 247422. Thanks goes to Tamara Markovic for help with biological terminology.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. 1.
    Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment. Cancer 104:1129–1137CrossRefGoogle Scholar
  2. 2.
    Turnlund JR (1989) The use of stable isotopes in mineral nutrition research. J Nutr 119:7–14Google Scholar
  3. 3.
    Rosman KJR, Taylor PDP (1998) Isotopic compositions of the elements 1997. Pure Appl Chem 70:217–235CrossRefGoogle Scholar
  4. 4.
    Anbar AD (2004) Iron stable isotopes: beyond biosignatures. Earth Planet Sci Lett 217:223–236CrossRefGoogle Scholar
  5. 5.
    Rehkämper M, Schonbachler M, Stirling CH (2001) Multiple collector ICP-MS: introduction to instrumentation, measurement techniques and analytical capabilities. Geostand Newslett 25:23–40CrossRefGoogle Scholar
  6. 6.
    Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855S–858SGoogle Scholar
  7. 7.
    Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18CrossRefGoogle Scholar
  8. 8.
    Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hematol 42:65–78CrossRefGoogle Scholar
  9. 9.
    Boriosi JP, Maki DG, Yngsdal-Krenz RA, Wald ER, Porter WP, Cook ME, Butz DE (2014) Changes in breath carbon isotope composition as a potential biomarker of inflammatory acute phase response in mechanically ventilated pediatric patients. J Anal At Spectrom 29:599–605CrossRefGoogle Scholar
  10. 10.
    Jahren AH, Bostic JN, Davy BA (2014) The potential for a carbon stable isotope biomarker of dietary sugar intake. J Anal At Spectrom 29:795–816CrossRefGoogle Scholar
  11. 11.
    Krayenbuehl PA, Walczyk T, Schoenberg R, von Blanckenburg F, Schulthess G (2005) Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105:3812–3816CrossRefGoogle Scholar
  12. 12.
    Aramendia M, Rello L, Resano M, Vanhaecke F (2013) Isotopic analysis of Cu in serum samples for diagnosis of Wilson’s disease: a pilot study. J Anal At Spectrom 28:675–681CrossRefGoogle Scholar
  13. 13.
    Morgan JLL, Skulan JL, Gordon GW, Romaniello SJ, Smith SM, Anbar AD (2012) Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc Natl Acad Sci 109:9989–9994CrossRefGoogle Scholar
  14. 14.
    Walczyk T, von Blanckenburg F (2002) Natural iron isotope variations in human blood. Science 295:2065–2066CrossRefGoogle Scholar
  15. 15.
    Van Heghe L, Engström E, Rodushkin I, Cloquet C, Vanhaecke F (2012) Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP-mass spectrometry. J Anal At Spectrom 27:1327–1334CrossRefGoogle Scholar
  16. 16.
    Albarede F, Telouk P, Lamboux A, Jaouen K, Balter V (2011) Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways. Metallomics 3:926–933CrossRefGoogle Scholar
  17. 17.
    Gordon GW, Monge J, Channon MB, Wu A, Skulan JL, Anbar AD, Fonseca R (2014) Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia 28:2112–2115CrossRefGoogle Scholar
  18. 18.
    Larner F, Woodley LN, Shousha S, Moyes A, Humphreys-Williams E, Strekopytov S, Halliday AN, Rehkamper M, Coombes RC (2015) Zinc isotopic compositions of breast cancer tissue. Metallomics 7:112–117CrossRefGoogle Scholar
  19. 19.
    Costas-Rodríguez M, Anoushkina Y, Lauwens S, Van Vlierberghe H, Delanghe J, Vanhaecke F (2015) Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis? Metallomics 7:491–498CrossRefGoogle Scholar
  20. 20.
    Telouk P, Puisieux A, Fujii T, Balter V, Bondanese VP, Morel AP, Clapisson G, Lamboux A, Albarede F (2015) Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7:299–308CrossRefGoogle Scholar
  21. 21.
    Balter V, Nogueira da Costa A, Bondanese VP, Jaouen K, Lamboux A, Sangrajrang S, Vincent N, Fourel F, Telouk P, Gigou M, Lecuyer C, Srivantanakul P, Brechot C, Albarede F, Hainaut P (2014) Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. Proc Natl Acad Sci 112:982–985CrossRefGoogle Scholar
  22. 22.
    Moynier F, Fujii T, Shaw AS, Le Borgne M (2013) Heterogeneous distribution of natural zinc isotopes in mice. Metallomics 5:693–699CrossRefGoogle Scholar
  23. 23.
    Allegre CJ (2008) Isotope geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. 24.
    Weiss DJ, Mason TF, Zhao FJ, Kirk GJ, Coles BJ, Horstwood MS (2005) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710CrossRefGoogle Scholar
  25. 25.
    Balter V, Zazzo A, Moloney AP, Moynier F, Schmidt O, Monahan FJ, Albarède F (2010) Bodily variability of zinc natural isotope abundances in sheep. Rapid Commun Mass Spectrom 24:605–612CrossRefGoogle Scholar
  26. 26.
    Horner TJ, Lee RBY, Henderson GM, Rickaby REM (2013) Nonspecific uptake and homeostasis drive the oceanic cadmium cycle. Proc Natl Acad Sci 110:2500–2505CrossRefGoogle Scholar
  27. 27.
    Navarette JU, Borrock DM, Viveros M, Ellzey JT (2011) Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochim Cosmochim Acta 75:784–799CrossRefGoogle Scholar
  28. 28.
    Elemental Scientific (2014) prepFAST-MC. http://www.icpms.com/products/prepfast-MC.php. Accessed 30 June 2015
  29. 29.
    Anoshkina Y, Costas-Rodríquez M, Vanhaecke F (2015) High-precision Fe isotopic analysis of whole blood for biomedical purposes without prior isolation of the target element. J Anal At Spectrom 30:1816–1821Google Scholar
  30. 30.
    Isomark (2015) Non-invasive breath monitoring technology in real time. http://isomark.mhwebstaging.com/. Accessed 30 June 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations