Skip to main content
Log in

Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a method combining polar organic chemical integrative samplers (POCIS) and ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was assessed for the determination of two corrosion inhibitors (benzotriazole and methylbenzotriazole), seven pesticides (atrazine, diuron, isoproturon, linuron, metolachlor, penconazole, terbuthylazine), and four pharmaceuticals (carbamazepine, diclofenac, metformin, sulfamethoxazole) in river water. As a first step, two POCIS sorbents, hydrophilic-lipophilic balance (HLB) and Strata X-CW, were compared. The comparison of the uptake profiles of the studied compounds showed that the HLB sorbent provides better uptake (higher sampled amount and better linearity) than Strata X-CW except for the basic compound metformin. Since the sampling rate (R s) of POCIS depends on environmental factors, seven compounds were evaluated as potential performance reference compounds (PRCs) through kinetic experiments. Deisopropylatrazine-d5 (DIA-d5) and, as far as we know, for the first time 4-methylbenzotriazole-d3 showed suitable desorption. The efficiency of both compounds to correct for the effect of water velocity was shown using a channel system in which POCIS were exposed to 2 and 50 cm s−1. Finally, POCIS were deployed upstream and downstream of agricultural wine-growing and tree-growing areas in the Lienne River and the Uvrier Canal (Switzerland). The impact of the studied areas on both streams could be demonstrated.

Photos of POCIS in the channel system (left, top), a POCIS in the cage (left, middle) and in the channel (left, bottom) and desorption kinetics (right, top) of PRCs (DIA-d5 and 4-methylbenzotriazol-d3) and estimated concentrations for methylbenzotriazol in the real river using DIA-d5 or 4-methylbenzotriazold3 as PRC (right, bottom)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richardson SD (2012) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 84:747–778. doi:10.1021/ac202903d

    Article  CAS  Google Scholar 

  2. Kjaerstad MB, Taxvig C, Nellemann C, Vinggaard AM, Andersen HR (2008) Do azole fungicides possess an endocrine disrupting hazard? Toxicol Lett 180(S1):S108

    Article  Google Scholar 

  3. Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201. doi:10.1016/j.envpol.2014.01.015

    Article  CAS  Google Scholar 

  4. European Commission Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/156/EEC, 84/491/EEC, 86/280/EEC

  5. Farré M, Petrovic M, Gros M, Kosjek T, Martinez E, Heath E, Osvald P, Loos R, Le Menach K, Budzinski H, De Alencastro F, Müller J, Knepper T, Fink G, Ternes TA, Zuccato E, Kormali P, Gans O, Rodil R, Quintana JB, Pastori F, Gentili A, Barceló D (2008) First interlaboratory exercise on non-steroidal anti-inflammatory drugs analysis in environmental samples. Talanta 76:580–590. doi:10.1016/j.talanta.2008.03.055

    Article  CAS  Google Scholar 

  6. Heath E, Kosjek T, Farre M, Quintana JB, de Alencastro LF, Castiglioni S, Gans O, Langford K, Loos R, Radjenović J, Rocca LM, Budzinski H, Tsipi D, Petrovic M, Barcelo D (2010) Second interlaboratory exercise on non-steroidal anti-inflammatory drug analysis in environmental aqueous samples. Talanta 81:1189–1196. doi:10.1016/j.talanta.2010.02.009

    Article  CAS  Google Scholar 

  7. Söderström H, Lindberg RH, Fick J (2009) Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling. J Chromatogr A 1216:623–630. doi:10.1016/j.chroma.2008.08.030

    Article  CAS  Google Scholar 

  8. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp T, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648, 0730-7268/04

    Article  CAS  Google Scholar 

  9. Morin N, Miège C, Coquery M, Randon J (2012) Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. TrAC Trends Anal Chem 36:144–175. doi:10.1016/j.trac.2012.01.007

    Article  CAS  Google Scholar 

  10. Li H, Vermeirssen ELM, Helm PA, Metcalfe CD (2010) Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers. Environ Toxicol Chem 29:2461–2469. doi:10.1002/etc.305

    Article  CAS  Google Scholar 

  11. Mazzella N, Dubernet J-F, Delmas F (2007) Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. Application to the passive sampling of the polar herbicides in aquatic environments. J Chromatogr A 1154:42–51. doi:10.1016/j.chroma.2007.03.087

    Article  CAS  Google Scholar 

  12. Jacquet R, Miège C, Bados P, Schiavone S, Coquery M (2012) Evaluating the polar organic chemical integrative sampler for the monitoring of beta-blockers and hormones in wastewater treatment plant effluents and receiving surface waters. Environ Toxicol Chem 31:279–288. doi:10.1002/etc.737

    Article  CAS  Google Scholar 

  13. Fauvelle V, Mazzella N, Belles A, Moreira A, Allan IJ, Budzinski H (2014) Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides. Anal Bioanal Chem 406:3191–3199. doi:10.1007/s00216-014-7757-0

    Article  CAS  Google Scholar 

  14. Lissalde S, Mazzella N, Mazellier P (2014) Polar organic chemical integrative samplers for pesticides monitoring: impacts of field exposure conditions. Sci Total Environ 488-489C:188–196. doi:10.1016/j.scitotenv.2014.04.069

    Article  CAS  Google Scholar 

  15. Ibrahim I, Togola A, Gonzalez C (2013) Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res Int 20:3679–3687. doi:10.1007/s11356-012-1284-3

    Article  CAS  Google Scholar 

  16. Fedorova G, Randak T, Golovko O, Kodes V, Grabicova K, Grabic R (2014) A passive sampling method for detecting analgesics, psycholeptics, antidepressants and illicit drugs in aquatic environments in the Czech Republic. Sci Total Environ 487:681–687. doi:10.1016/j.scitotenv.2013.12.091

    Article  CAS  Google Scholar 

  17. Togola A, Budzinski H (2007) Development of polar organic integrative samplers for analysis of pharmaceuticals in aquatic systems. Anal Chem 79:6734–6741. doi:10.1021/ac070559i

    Article  CAS  Google Scholar 

  18. Jones-Lepp TL, Alvarez DA, Petty JD, Huckins JN (2004) Polar organic chemical integrative sampling and liquid chromatography-electrospray/ion-trap mass spectrometry for assessing selected prescription and illicit drugs in treated sewage effluents. Arch Environ Contam Toxicol 47:427–439. doi:10.1007/s00244-004-3146-6

    Article  CAS  Google Scholar 

  19. Harman C, Reid M, Thomas KV (2011) In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year-long assessment of community drug usage. Environ Sci Technol 45:5676–5682. doi:10.1021/es201124j

    Article  CAS  Google Scholar 

  20. Li H, Helm PA, Metcalfe CD (2010) Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler. Environ Toxicol Chem 29:751–762. doi:10.1002/etc.104

    Article  CAS  Google Scholar 

  21. Fauvelle V, Mazzella N, Delmas F, Madarassou K, Eon M, Budzinski H (2012) Use of mixed-mode ion exchange sorbent for the passive sampling of organic acids by polar organic chemical integrative sampler (POCIS). Environ Sci Technol 46:13344–13353. doi:10.1021/es3035279

    Article  CAS  Google Scholar 

  22. Li H, Helm PA, Paterson G, Metcalfe CD (2011) The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere 83:271–280. doi:10.1016/j.chemosphere.2010.12.071

    Article  CAS  Google Scholar 

  23. Miège C, Budzinski H, Jacquet R, Soulier C, Pelte T, Coquery M (2012) Polar organic chemical integrative sampler (POCIS): application for monitoring organic micropollutants in wastewater effluent and surface water. J Environ Monit 14:626–635. doi:10.1039/c1em10730e

    Article  Google Scholar 

  24. Morin N, Camilleri J, Cren-Olivé C, Coquery M, Miège C (2013) Determination of uptake kinetics and sampling rates for 56 organic micropollutants using “pharmaceutical” POCIS. Talanta 109:61–73. doi:10.1016/j.talanta.2013.01.058

    Article  CAS  Google Scholar 

  25. Zabiegała B, Kot-Wasik A, Urbanowicz M, Namieśnik J (2010) Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal Bioanal Chem 396:273–296. doi:10.1007/s00216-009-3244-4

    Article  CAS  Google Scholar 

  26. Mazzella N, Lissalde S, Moreira S, Delmas F, Mazellier P, Huckins JN (2010) Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ Sci Technol 44:1713–1719. doi:10.1021/es902256m

    Article  CAS  Google Scholar 

  27. Belles A, Tapie N, Pardon P, Budzinski H (2014) Development of the performance reference compound approach for the calibration of “polar organic chemical integrative sampler” (POCIS). Anal Bioanal Chem 406:1131–1140. doi:10.1007/s00216-013-7297-z

    Article  CAS  Google Scholar 

  28. Liu H, Wong CS, Zeng EY (2013) Recognizing the limitations of performance reference compound (PRC)-calibration technique in passive water sampling. Environ Sci Technol 47:10104–10105. doi:10.1021/es403353d

    CAS  Google Scholar 

  29. Harman C, Allan IJ, Bäuerlein PS (2011) The challenge of exposure correction for polar passive samplers—the PRC and the POCIS. Environ Sci Technol 45:9120–9121. doi:10.1021/es2033789

    Article  CAS  Google Scholar 

  30. Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler—a critical review. Environ Toxicol Chem 31:2724–2738. doi:10.1002/etc.2011

    Article  CAS  Google Scholar 

  31. Estoppey N, Omlin J, Schopfer A, Esseiva P, Vermeirssen ELM, Delémont O, De Alencastro LF (2015) Low density polyethylene (LDPE) passive samplers for the investigation of polychlorinated biphenyl (PCB) point sources in rivers. Chemosphere 118:268–276. doi:10.1016/j.chemosphere.2014.09.032

    Article  CAS  Google Scholar 

  32. Vermeirssen ELM, Dietschweiler C, Escher BI, van der Voet J, Hollender J (2012) Transfer kinetics of polar organic compounds over polyethersulfone membranes in the passive samplers POCIS and Chemcatcher. Environ Sci Technol 46:6759–6766. doi:10.1021/es3007854

    Article  CAS  Google Scholar 

  33. Ibrahim I, Togola A, Gonzalez C (2013) In-situ calibration of POCIS for the sampling of polar pesticides and metabolites in surface water. Talanta 116:495–500. doi:10.1016/j.talanta.2013.07.028

    Article  CAS  Google Scholar 

  34. Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487. doi:10.1016/j.watres.2013.08.024

    Article  CAS  Google Scholar 

  35. Morasch B, Bonvin F, Reiser H, Grandjean D, de Alencastro LF, Perazzolo C, Chèvre N, Kohn T (2010) Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: micropollutant removal between wastewater and raw drinking water. Environ Toxicol Chem 29:1658–1668. doi:10.1002/etc.222

    CAS  Google Scholar 

  36. Bäuerlein PS, Mansell JE, Ter Laak TL, de Voogt P (2012) Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption? Environ Sci Technol 46:954–961. doi:10.1021/es203404x

    Article  CAS  Google Scholar 

  37. Belles A, Pardon P, Budzinski H (2014) Development of an adapted version of polar organic chemical integrative samplers (POCIS-Nylon). Anal Bioanal Chem 406:1099–1110. doi:10.1007/s00216-013-7286-2

    Article  CAS  Google Scholar 

  38. MacLeod SL, McClure EL, Wong CS (2007) Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. Environ Toxicol Chem 26:2517–2529. doi:10.1897/07-238.1

    Article  CAS  Google Scholar 

  39. Zhang Z, Hibberd A, Zhou JL (2008) Analysis of emerging contaminants in sewage effluent and river water: comparison between spot and passive sampling. Anal Chim Acta 607:37–44. doi:10.1016/j.aca.2007.11.024

    Article  CAS  Google Scholar 

  40. Moschet C, Vermeirssen ELM, Singer H, Stamm C, Hollender J (2014) Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Res 71C:306–317. doi:10.1016/j.watres.2014.12.043

    Google Scholar 

  41. Arditsoglou A, Voutsa D (2008) Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers. Environ Pollut 156:316–324. doi:10.1016/j.envpol.2008.02.007

    Article  CAS  Google Scholar 

  42. Shi X, Zhou JLL, Zhao H, Hou L, Yang Y (2014) Application of passive sampling in assessing the occurrence and risk of antibiotics and endocrine disrupting chemicals in the Yangtze Estuary, China. Chemosphere 111:344–351. doi:10.1016/j.chemosphere.2014.03.139

    Article  CAS  Google Scholar 

  43. Andreu V, Picó Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. TrAC Trends Anal Chem 23:772–789. doi:10.1016/j.trac.2004.07.008

    Article  CAS  Google Scholar 

  44. Office de la viticulture (2014) Département de l’économie, de l’énergie et du territoire, Service de l’agriculture téléchargeable sur 2014. http://www.vs.ch/NavigData/DS_68/M16651/fr/Herbicides_Viti_2014.pdf

  45. Bermúdez-Couso A, Arias-Estévez M, Nóvoa-Muñoz JC, López-Periago E, Soto-González B, Simal-Gándara J (2007) Seasonal distributions of fungicides in soils and sediments of a small river basin partially devoted to vineyards. Water Res 41:4515–4525. doi:10.1016/j.watres.2007.06.029

    Article  CAS  Google Scholar 

  46. Reemtsma T, Miehe U, Duennbier U, Jekel M (2010) Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles. Water Res 44:596–604. doi:10.1016/j.watres.2009.07.016

    Article  CAS  Google Scholar 

  47. Voutsa D, Hartmann P, Schaffner C, Giger W (2006) Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Emerg Pollut 13:333–341. doi:10.1065/espr2006.01.295

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Environmental Protection Office of Canton Valais (Switzerland) for its support and M. Bernard (Head of Water Protection Section) for his confidence. They also thank P. Esseiva and O. Delémont (School of Criminal Sciences) for their support. I. Carpinteiro is thankful for her Swiss Government Excellence Postdoctoral Scholarship. They also acknowledge B. Guiboud, J. Omlin, and F. Genilloud for their contribution to the practical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Carpinteiro.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpinteiro, I., Schopfer, A., Estoppey, N. et al. Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers. Anal Bioanal Chem 408, 1067–1078 (2016). https://doi.org/10.1007/s00216-015-9199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9199-8

Keywords

Navigation