Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 11, pp 2927–2935 | Cite as

Microchamber arrays with an integrated long luminescence lifetime pH sensor

  • Elisabeth Poehler
  • Simon A. Pfeiffer
  • Marc Herm
  • Michael Gaebler
  • Benedikt Busse
  • Stefan Nagl
Research Paper
Part of the following topical collections:
  1. Young Investigators in Analytical and Bioanalytical Science

Abstract

A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)2+. The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-μm-thick layer into “CytoCapture” cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 μm length and width and 15 μm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.

Graphical abstract

A pH probe with a microsecond luminescence lifetime is described and its covalent attachment to a hydrogel matrix, integration into microchamber arrays, and use for pH monitoring in a model E. coli miniaturized cell culture.

Keywords

Long-lifetime luminescent pH sensor FRET-based pH imaging Polymeric microcavity array Escherichia coli cell growth Bioprocess miniaturization 

Notes

Acknowledgments

Financial support of this work by the German Research Foundation (DFG, NA 947/1-2) and the German Ministry of Education and Research (BMBF, V4KMU10/126) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

Elisabeth Poehler, Simon A. Pfeiffer, and Stefan Nagl declare they have no competing interests. Marc Herm and Michael Gaebler are active for Synthon Chemicals and plan to make the pH probe molecule described herein (Ru(CNF)3) commercially available. Benedikt Busse is associated with zell-kontakt GmbH that offer “CytoCapture” microchamber arrays for sale.

References

  1. 1.
    Hattori K, Sugiura S, Kanamori T (2011) Microenvironment array chip for cell culture environment screening. Lab Chip 11(2):212–214CrossRefGoogle Scholar
  2. 2.
    Nagai H, Murakami Y, Yokoyama K, Tamiya E (2001) High-throughput PCR in silicon based microchamber array. Biosens Bioelectron 16(9–12):1015–1019CrossRefGoogle Scholar
  3. 3.
    Matsubara Y, Kerman K, Kobayashi M, Yamamura S, Morita Y, Tamiya E (2005) Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. Biosens Bioelectron 20(8):1482–1490CrossRefGoogle Scholar
  4. 4.
    Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1243259CrossRefGoogle Scholar
  5. 5.
    Eyer K, Kuhn P, Hanke C, Dittrich PS (2012) A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12(4):765–772CrossRefGoogle Scholar
  6. 6.
    Wang Y, Shah P, Phillips C, Sims CE, Allbritton NL (2012) Trapping cells on a stretchable microwell array for single-cell analysis. Anal Bioanal Chem 402(3):1065–1072CrossRefGoogle Scholar
  7. 7.
    Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51(15):3532–3554CrossRefGoogle Scholar
  8. 8.
    Stich M, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39(8):3102CrossRefGoogle Scholar
  9. 9.
    Pfeiffer SA, Nagl S (2015) Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications. Methods Appl Fluoresc 3(3):034003CrossRefGoogle Scholar
  10. 10.
    Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86(1):15–29CrossRefGoogle Scholar
  11. 11.
    Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87(2):243–254CrossRefGoogle Scholar
  12. 12.
    Baldini F, Giannetti A, Mencaglia AA (2007) Optical sensor for interstitial pH measurements. J Biomed Opt 12(2):024024/1–024024/7CrossRefGoogle Scholar
  13. 13.
    Ray A, Koo Lee YE, Epstein T, Kim G, Kopelman R (2011) Two-photon nano-PEBBLE sensors: subcellular pH measurements. Analyst 136(18):3616–3622CrossRefGoogle Scholar
  14. 14.
    Vallejos JR, Uplekar S, da Silva JF, Brorson KA, Moreira AR, Rao G (2012) A case study in converting disposable process scouting devices into disposable bioreactors as a future bioprocessing tool. Biotechnol Bioeng 109(11):2790–2797CrossRefGoogle Scholar
  15. 15.
    Aigner D, Dmitriev RI, Borisov SM, Papkovsky DB, Klimant I (2014) pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging. J Mater Chem B 2(39):6792–6801CrossRefGoogle Scholar
  16. 16.
    Szmacinski H, Lakowicz JR (1995) Fluorescence lifetime-based sensing and imaging. Sens Actuators, B 29(1–3):16–24CrossRefGoogle Scholar
  17. 17.
    Hanson GT, McAnaney TB, Park ES, Rendell MEP, Yarbrough DK, Chu S, Xi L, Boxer SG, Montrose MH, Remington SJ (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41(52):15477–15488CrossRefGoogle Scholar
  18. 18.
    Richter A, Paschew G, Klatt S, Lienig J, Arndt K, Adler HP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581CrossRefGoogle Scholar
  19. 19.
    Huber C, Klimant I, Krause C, Werner T, Mayr T, Wolfbeis OS (2000) Optical sensor for seawater salinity. Fres J Anal Chem 368(2–3):196–202CrossRefGoogle Scholar
  20. 20.
    Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73(17):4354–4363CrossRefGoogle Scholar
  21. 21.
    Schreml S, Meier RJ, Kirschbaum M, Kong SC, Gehmert S, Felthaus O, Küchler S, Sharpe JR, Wöltje K, Weiß KT, Albert M, Seidl U, Schröder J, Morsczeck C, Prantl L, Duschl C, Pedersen SF, Gosau M, Berneburg M, Wolfbeis OS, Landthaler M, Babilas P (2014) Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair. Theranostics 4(7):721–735CrossRefGoogle Scholar
  22. 22.
    Boniello C, Mayr T, Bolivar JM, Nidetzky B (2012) Dual-lifetime referencing (DLR): a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts. BMC Biotechnol 12(1):11CrossRefGoogle Scholar
  23. 23.
    Kosch U, Klimant I, Werner T, Wolfbeis OS (1998) Strategies to design pH optodes with luminescence decay times in the microsecond time regime. Anal Chem 70(18):3892–3897CrossRefGoogle Scholar
  24. 24.
    Krause C, Werner T, Huber C, Klimant I, Wolfbeis OS (1998) Strategies to design pH optodes with luminescence decay times in the microsecond time regime. Anal Chem 70(18):3983–3985CrossRefGoogle Scholar
  25. 25.
    Werner T, Klimant I, Huber C, Krause C, Wolfbeis OS (1999) Fiber optic ion-microsensors based on luminescence lifetime. Mikrochim Acta 131(1–2):25–28CrossRefGoogle Scholar
  26. 26.
    Neurauter G, Klimant I, Wolfbeis OS (1999) Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal Chim Acta 382(1–2):67–75CrossRefGoogle Scholar
  27. 27.
    Kosch U, Klimant I, Wolfbeis OS (1999) Long-lifetime based pH micro-optodes without oxygen interference. Fres J Anal Chem 364(1):48–53CrossRefGoogle Scholar
  28. 28.
    Murtaza Z, Chang Q, Rao G, Lin H, Lakowicz JR (1997) Long-lifetime metal–ligand pH probe. Anal Biochem 247(2):216–222CrossRefGoogle Scholar
  29. 29.
    Meier RJ, Simbürger JMB, Soukka T, Schäferling M (2015) A FRET based pH probe with a broad working range applicable to referenced ratiometric dual wavelength and luminescence lifetime read out. Chem Commun 51(28):6145–6148CrossRefGoogle Scholar
  30. 30.
    Herzog C, Beckert E, Nagl S (2014) Rapid isoelectric point determination in a miniaturized preparative separation using Jet-dispensed optical pH sensors and micro free-flow electrophoresis. Anal Chem 86(19):9533–9539CrossRefGoogle Scholar
  31. 31.
    Leventis N, Rawashdeh AM, Elder IA, Yang J, Dass A, Sotiriou-Leventis C (2004) Synthesis and characterization of Ru(II)tris(1,10-phenanthroline)-electron acceptor dyads incorporating the 4-benzoyl-N-methylpyridinium cation or N-benzyl-N′-methyl viologen. Improving the dynamic range, sensitivity, and response time of sol–gel-based optical oxygen sensors. Chem Mater 16(8):1493–1506CrossRefGoogle Scholar
  32. 32.
    Sun S, Ungerböck B, Mayr T (2015) Imaging of oxygen in microreactors and microfluidic systems. Methods Appl Fluoresc 3(3):034002CrossRefGoogle Scholar
  33. 33.
    Kocincová AS, Nagl S, Arain S, Krause C, Borisov SM, Arnold M, Wolfbeis OS (2008) Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol Bioeng 100(3):430–438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elisabeth Poehler
    • 1
  • Simon A. Pfeiffer
    • 1
  • Marc Herm
    • 2
  • Michael Gaebler
    • 2
  • Benedikt Busse
    • 3
  • Stefan Nagl
    • 1
  1. 1.Institut für Analytische ChemieUniversität LeipzigLeipzigGermany
  2. 2.SYNTHON ChemicalsWolfenGermany
  3. 3.zell-kontakt GmbHNörten-HardenbergGermany

Personalised recommendations