Skip to main content
Log in

Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The systemic or local administration of a photosensitizer for photodynamic therapy is highly limited by poor selectivity, rapid deactivation and long-lasting skin toxicity due to unfavorable biodistribution. Drug delivery systems based on nanocarriers may help specific and effective delivery of photosensitizers. In the present paper, the interaction of two photosensitizers, methylene blue and rose bengal, with phosphorous cationic and anionic dendrimers as potential nanocarriers, has been characterized. A novel method is presented based on the analysis of the infrared spectra of mixtures of photosensitizer and dendrimer. The capacity of dendrimers to bind the photosensitizers has been evaluated by obtaining the corresponding binding curves. It is shown that methylene blue interacts with both cationic and anionic dendrimers, whereas rose bengal only binds to the cationic ones. Dendrimers are shown to be potential nanocarriers for a specific delivery of both photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  CAS  Google Scholar 

  2. Foster TH, Giesselman BR, Hu R, Kenney ME, Mitra S (2010) Intratumor administration of the photosensitizer Pc 4 affords photodynamic therapy efficacy and selectivity at short drug-light intervals. Transl Oncol 3:135–141

    Article  Google Scholar 

  3. Yano S, Hirohara S, Obata M, Hagiya Y, Ogura S, Ikeda A, Kataoka H, Tanaka M, Joh T (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12:46–67

    Article  CAS  Google Scholar 

  4. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  Google Scholar 

  5. Konan YN, Gurny R, Alleman E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106

    Article  CAS  Google Scholar 

  6. O’Connor AE, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85:1053–1074

    Article  Google Scholar 

  7. Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA (2011) Synthesis and in vitro studies of biodegradable modified chitosan nanoparticles for photodynamic treatment of cancer. Int J Biol Macromol 49:1059–1065

    Article  Google Scholar 

  8. Kano A, Taniwaki Y, Nakamura I, Shimada N, Moriyama K, Maruyama A (2013) Tumor delivery of Photofrin(R) by PLL-g-PEG for photodynamic therapy. J Control Release 167:315–321

    Article  CAS  Google Scholar 

  9. Derycke ASL, De Witte PAM (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56:17–30

    Article  CAS  Google Scholar 

  10. Vivero-Escoto JL, Vegaab DL (2014) Stimuli-responsive protoporphyrin IX silica-based nanoparticles for photodynamic therapy in vitro. RSC Adv 4:14400–14407

    Article  CAS  Google Scholar 

  11. Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C, Charnay C, Derrien G, Smaïhi M, Sahmoune A, Morère A, Maillard P, Garcia M, Durand JO (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402:221–230

    Article  CAS  Google Scholar 

  12. Camerin M, Magaraggia M, Soncin M, Jori G, Moreno M, Chambrier I, Cook MJ, Russell DA (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 46:1910–1918

    Article  CAS  Google Scholar 

  13. Ol’shevskaya VA, Savchenko AN, Zaitsev AV, Kononova EG, Petrovskii PV, Ramonova AA, Tatarskiy VV Jr, Moisenovich MM, Kalinin VN, Shtil AA (2009) Novel metal complexes of boronated chlorine e6 for photodynamic therapy. J Organomet Chem 694:1632–1637

    Article  Google Scholar 

  14. Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208

    CAS  Google Scholar 

  15. El Kazzouli S, El Brahmi N, Mignani S, Bousmina M, Zablocka M, Majoral JP (2012) From metallodrugs to metallodendrimers for nanotherapy in oncology: a concise overview. Curr Med Chem 19:4995–5010

    Article  Google Scholar 

  16. Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Dendrimer space concept for innovative nanomedicine: a futuristic vision for medicinal chemistry. Prog Polym Sci 38:993–1008

    Article  CAS  Google Scholar 

  17. Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 65:1316–1330

    Article  CAS  Google Scholar 

  18. Klajnert B, Rozanek M, Bryszewska M (2012) Dendrimers in photodynamic therapy. Curr Med Chem 19:4903–4912

    Article  CAS  Google Scholar 

  19. Ihre HR, Padilla De Jesús O, Szoka FC Jr, Fréchet JMJ (2002) Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 13:443–452

    Article  CAS  Google Scholar 

  20. Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    Article  CAS  Google Scholar 

  21. Bhadra D, Bhadra S, Jain S, Jain NK (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–112

    Article  CAS  Google Scholar 

  22. Kojima C, Toi Y, Harada A, Kono K (2007) Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Bioconjug Chem 18:663–670

    Article  CAS  Google Scholar 

  23. Herlambang S, Kumagai M, Nomoto T, Horie S, Fukushima S, Oba M, Miyazaki K, Morimoto Y, Nishiyama N, Kataoka K (2011) Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy. J Control Release 155:449–457

    Article  CAS  Google Scholar 

  24. Nishiyama N, Nakagishi Y, Morimoto Y, Lai PS, Miyazaki K, Urano K, Horie S, Kumagai M, Fukushima S, Cheng Y, Jang WD, Kikuchi M, Kataoka K (2009) Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release 133:245–251

    Article  CAS  Google Scholar 

  25. Zhang GD, Harada A, Nishiyama N, Jiang DL, Koyama H, Aida T, Kataoka K (2003) Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release 93:141–150

    Article  CAS  Google Scholar 

  26. Casas A, Battah S, Di Venosa G, Dobbin P, Rodriguez L, Fukuda H, Batlle A, MacRobert AJ (2009) Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. J Control Release 135:136–143

    Article  CAS  Google Scholar 

  27. Al-Jamal KT, Al-Jamal WT, Wang JT, Rubio N, Buddle J, Gathercole D, Zloh M, Kostarelos K (2013) Cationic poly-l-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 7:1905–1917

    Article  CAS  Google Scholar 

  28. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160

    Article  CAS  Google Scholar 

  29. Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ (2011) Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 105:1115–1122

    Article  CAS  Google Scholar 

  30. Wachter E, Dees C, Harkins J, Scott T, Petersen M, Rush RE, Cada A (2003) Topical rose bengal: preclinical evaluation of pharmacokinetics and safety. Lasers Surg Med 32:101–110

    Article  Google Scholar 

  31. Tardivo JP, Giglio AD, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Severino D, de Fátima Turchiello R, Baptista MS (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2:175–191

    Article  CAS  Google Scholar 

  32. Xu D, Neckerst DC (1987) Aggregation of rose bengal molecules in solution. J Photochem Photobiol A 40:361–370

    Article  CAS  Google Scholar 

  33. Patil K, Pawar R, Talap P (2000) Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea. Phys Chem Chem Phys 2:4313–4317

    Article  CAS  Google Scholar 

  34. Dabrzalska M, Zablocka M, Mignani S, Majoral JP, Klajnert-Maculewicz B (2015) Phosphorous dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer on two dendrimer-photosensitizer complexes: cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue. Int J Pharm 492:266–274

    Article  CAS  Google Scholar 

  35. Barnadas-Rodríguez R, Cladera J (2015) Steroidal surfactants: detection of premicellar aggregation, secondary aggregation changes in micelles, and hosting of a highly charged negative substrate. Langmuir 31:8980–8988

    Article  Google Scholar 

  36. Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  CAS  Google Scholar 

  37. Andre W, Sandt C, Dumas P, Djian P, Hoffner G (2013) Structure of inclusions of Huntington’s disease brain revealed by synchrotron infrared microspectroscopy: polymorphism and relevance to cytotoxicty. Anal Chem 85:3765–3773

    Article  CAS  Google Scholar 

  38. Hankare PP, Jadhav AV, Patil RP, Garadkar KM, Mulla IS, Sasikala R (2014) Photocatalytic degradation of rose bengal in visible light with Cr substituted MnFe2O4 ferrospinel. Arch Phys Res 3:269–276

    Google Scholar 

  39. Xiong L, Yang Y, Mai J, Sun W, Zhang C, Wei D, Chen Q, Ni J (2010) Adsorption behavior of methylene blue onto titanate nanotubes. Chem Eng J 156:313–320

    Article  CAS  Google Scholar 

  40. Szulc A, Zablocka M, Coppel Y, Bijani C, Dabkowski W, Bryszewska M, Klajnert-Maculewicz B, Majoral JP (2014) A viologen phosphorus dendritic molecule as a carrier of ATP and mant-ATP: spectrofluorimetric and NMR studies. New J Chem 38:6212–6622

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the project “Phosphorus dendrimers as carriers of photosensitizers in photodynamic therapy and its combination with hyperthermia in in vitro studies” operated within the Foundation for Polish Science VENTURES Programme (Project VENTURES number VENTURES/2013-11/3) co-financed by the EU European Regional Development Fund and by the grant HARMONIA “Studying phosphorus dendrimers as systems transporting photosensitizers” no. UMO-2013/08/M/NZ1/00761 supported by National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Cladera.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabrzalska, M., Benseny-Cases, N., Barnadas-Rodríguez, R. et al. Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers. Anal Bioanal Chem 408, 535–544 (2016). https://doi.org/10.1007/s00216-015-9125-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9125-0

Keywords

Navigation