Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 1, pp 295–305 | Cite as

A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices

  • Nadine S. Feichtmeier
  • Nadine Ruchter
  • Sonja Zimmermann
  • Bernd Sures
  • Kerstin LeopoldEmail author
Research Paper

Abstract

Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag+) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt ad) between silver ions and 20-nm AgNPs vary in a range from −2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method.

Graphical Abstract

Direct detection of silver nanoparticles in biological samples

Keywords

Silver nanoparticle detection Direct solid sampling Graphite furnace atomic absorption spectrometry Silver nanoparticle entry in food Biological samples Robust screening method 

Notes

Acknowledgments

The authors are very grateful to Deutsche Forschungsgemeinschaft for their financial support of this work by project LE 2457/8-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2015_9108_MOESM1_ESM.pdf (363 kb)
ESM 1 (PDF 362 kb)

References

  1. 1.
    Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. doi: 10.1016/j.jcis.2011.07.017 CrossRefGoogle Scholar
  2. 2.
    Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258. doi: 10.1080/02652030701744538 CrossRefGoogle Scholar
  3. 3.
    Jokar M, Rahman RA (2014) Study of silver ion migration from melt-blended and layered-deposited silver polyethylene nanocomposite into food simulants and apple juice. Food Addit Contam Part AGoogle Scholar
  4. 4.
    von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam Part A 30:612–620CrossRefGoogle Scholar
  5. 5.
    Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85. doi: 10.1016/j.foodchem.2014.05.139 CrossRefGoogle Scholar
  6. 6.
    Addo Ntim S, Thomas TA, Begley TH, Noonan GO (2015) Characterization and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Food Addit Contam Part AGoogle Scholar
  7. 7.
    Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22. doi: 10.1016/j.fct.2013.08.014 CrossRefGoogle Scholar
  8. 8.
    Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014) Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agric Food Chem 62:1403–1411. doi: 10.1021/jf404038y CrossRefGoogle Scholar
  9. 9.
    Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2013) Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem 139:389–397. doi: 10.1016/j.foodchem.2013.01.045 CrossRefGoogle Scholar
  10. 10.
    Jany AK, Kuiper H, Larsen JC, Le Neindre P, Schans J, Schlatter J, Silano V, Skerfving S, Vannier P (2009) Scientific opinion of the Scientific Committee on a request from the European Commission on the Potential Risks Arising from Nanoscience and Nanotechnologies on Food and Feed Safety. EFSA J 958:1–39Google Scholar
  11. 11.
    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) (2011) Scientific opinion on the safety evaluation of the substance, silver zeolite A (silver zinc sodium ammonium aluminosilicate), silver content 2-5 %, for use in food contact materials. EFSA J 9:1999–2011Google Scholar
  12. 12.
    (2011) Verordnung (EU)Nr. 1169/2011 des Europäischen Parlaments und des Rates. 1–46Google Scholar
  13. 13.
    (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. 1–3Google Scholar
  14. 14.
    Lövestam G, Rauscher H, Roebben G, Klüttgen BS, Gibson N, Putaud J-P, Stamm H (2010) Considerations on a definition of nanomaterial for regulatory purposes. Publications OfficeGoogle Scholar
  15. 15.
    Wigginton NS, Haus KL, Hochella MF Jr (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316. doi: 10.1039/b712709j CrossRefGoogle Scholar
  16. 16.
    Tiede K, Boxall ABA, Tiede D, Tear SP, David H, Lewis J (2009) A robust size-characterisation methodology for studying nanoparticle behaviour in “real” environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J Anal At Spectrom 24:964–972. doi: 10.1039/b822409a CrossRefGoogle Scholar
  17. 17.
    Blasco C, Picó Y (2011) Determining nanomaterials in food. Trends Anal Chem 30:84–99. doi: 10.1016/j.trac.2010.08.010 CrossRefGoogle Scholar
  18. 18.
    Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30:517–527. doi: 10.1016/j.trac.2010.11.014 CrossRefGoogle Scholar
  19. 19.
    Silva BFD, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barceló D (2011) Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal Chem 30:528–540. doi: 10.1016/j.trac.2011.01.008 CrossRefGoogle Scholar
  20. 20.
    Justino CIL, Rocha-Santos TA, Duarte AC (2011) Sampling and characterization of nanoaerosols in different environments. Trends Anal Chem 30:554–567. doi: 10.1016/j.trac.2010.12.002 CrossRefGoogle Scholar
  21. 21.
    Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284. doi: 10.1021/es900249m CrossRefGoogle Scholar
  22. 22.
    Bolea E, Jiménez-Lamana J, Laborda F, Abad-Álvaro I, Bladé C, Arola L, Castillo JR (2014) Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests. Analyst 139:914–922. doi: 10.1039/C3AN01443F CrossRefGoogle Scholar
  23. 23.
    Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, Larsen EH (2013) Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem 405:8185–8195. doi: 10.1007/s00216-013-7228-z CrossRefGoogle Scholar
  24. 24.
    Cascio C, Geiss O, Franchini F, Ojea-Jimenez I, Rossi F, Gilliland D, Calzolai L (2015) Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J Anal At Spectrom 30:1255–1265. doi: 10.1039/C4JA00410H CrossRefGoogle Scholar
  25. 25.
    Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31:115–121. doi: 10.1002/etc.719 CrossRefGoogle Scholar
  26. 26.
    Linsinger TPJ, Peters R, Weigel S (2014) International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Anal Bioanal Chem 406:3835–3843. doi: 10.1007/s00216-013-7559-9 CrossRefGoogle Scholar
  27. 27.
    Gagné F, Turcotte P, Gagnon C (2012) Screening test of silver nanoparticles in biological samples by graphite furnace-atomic absorption spectrometry. Anal Bioanal Chem 404:2067–2072. doi: 10.1007/s00216-012-6258-2 CrossRefGoogle Scholar
  28. 28.
    Resano M, Aramendía M, Belarra MA (2014) High-resolution continuum source graphite furnace atomic absorption spectrometry for direct analysis of solid samples and complex materials: a tutorial review. J Anal At Spectrom 29:2229–2250. doi: 10.1039/C4JA00176A CrossRefGoogle Scholar
  29. 29.
    Resano M, Lapeña AC, Belarra MA (2013) Potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the Ag body burden in individual Daphnia magna specimens exposed to Ag nanoparticles. Anal Methods 5:1130–1139. doi: 10.1039/c2ay26456k CrossRefGoogle Scholar
  30. 30.
    Resano M, Mozas E, Crespo C, Briceño J, del Campo Menoyo J, Belarra MA (2010) Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the biodistribution of gold nanoparticles in mice tissue after intravenous administration. J Anal At Spectrom 25:1864–1873. doi: 10.1039/c0ja00086h CrossRefGoogle Scholar
  31. 31.
    Feichtmeier NS, Leopold K (2014) Detection of silver nanoparticles in parsley by solid sampling high-resolution–continuum source atomic absorption spectrometry. Anal Bioanal Chem 406:3887–3894. doi: 10.1007/s00216-013-7510-0 CrossRefGoogle Scholar
  32. 32.
    Kurfürst U, Pauwels J, Grobecker K-H, Stoeppler M, Muntau H (1993) Micro-heterogeneity of trace elements in reference materials—determination and statistical evaluation. Fresenius J Anal Chem 345:112–120CrossRefGoogle Scholar
  33. 33.
    Osterauer R, Marschner L, Betz O, Gerberding M, Sawasdee B, Cloetens P, Haus N, Sures B, Triebskorn R, Köhler H-R (2010) Turning snails into slugs: induced body plan changes and formation of an internal shell. Evol Dev 12:474–483. doi: 10.1111/j.1525-142X.2010.00433.x CrossRefGoogle Scholar
  34. 34.
    Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354. doi: 10.1016/j.actbio.2010.08.003 CrossRefGoogle Scholar
  35. 35.
    Sures B, Zimmermann S (2007) Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha. Environ Pollut 146:444–451. doi: 10.1016/j.envpol.2006.07.004 CrossRefGoogle Scholar
  36. 36.
    da Silva AF, Borges DLG, Lepri FG, Welz B, Curtius AJ, Heitmann U (2005) Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry. Anal Bioanal Chem 382:1835–1841. doi: 10.1007/s00216-005-3327-9 CrossRefGoogle Scholar
  37. 37.
    Welz B, Vale MGR, Borges DLG, Heitmann U (2007) Progress in direct solid sampling analysis using line source and high-resolution continuum source electrothermal atomic absorption spectrometry. Anal Bioanal Chem 389:2085–2095. doi: 10.1007/s00216-007-1555-x CrossRefGoogle Scholar
  38. 38.
    Baysal A, Akman S (2010) Determination of lead in hair and its segmental analysis by solid sampling electrothermal atomic absorption spectrometry. Spectrochim Acta B At Spectrosc 65:340–344. doi: 10.1016/j.sab.2010.02.016 CrossRefGoogle Scholar
  39. 39.
    United States Department of Agriculture, Agricultural Research Service (2015) National Nutrient Database for Standard Reference Release 27. In: Nutr. List. http://ndb.nal.usda.gov/ndb/nutrients/index. Accessed 20 Aug 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nadine S. Feichtmeier
    • 1
  • Nadine Ruchter
    • 2
  • Sonja Zimmermann
    • 2
  • Bernd Sures
    • 2
  • Kerstin Leopold
    • 1
    Email author
  1. 1.Institute of Analytical and Bioanalytical ChemistryUniversity of UlmUlmGermany
  2. 2.Institute of Aquatic EcologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations