Analytical and Bioanalytical Chemistry

, Volume 407, Issue 30, pp 9177–9184 | Cite as

Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film

  • Lin Gao
  • Wenjuan Han
  • Xiuying Li
  • Jixiang Wang
  • Yongsheng YanEmail author
  • Chunxiang Li
  • Jiangdong Dai
Research Paper


A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0–5.0 nM to be described by the Stern–Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food.


λ-Cyhalothrin Surface molecularly imprinted polymer Fluorescence detection Ultra-trace Nonlinear equation 



This work was financially supported by the National Natural Science Foundation of China (Nos. 21107037, 21407064, 21407057, 21176107, and21277063), Natural Science Foundation of Jiangsu Province (Nos. BK2011461,BK2011514), National Postdoctoral Science Foundation (No. 2013M530240), Postdoctoral Science Foundation funded Project of Jiangsu Province (No. 1202002B) and Programs of Senior Talent Foundation of Jiangsu University (No. 12JDG090), Ph.D. Innovation Programs Foundation of Jiangsu Province (No. CXZZ13_0681).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

216_2015_9083_MOESM1_ESM.pdf (183 kb)
ESM 1 (PDF 183 kb)


  1. 1.
    Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3CrossRefGoogle Scholar
  2. 2.
    Wei X, Meng MJ, Song ZL, Gao L, Li HJ, Dai JD, Zhou ZP, Li CX, Pan JM, Yu P, Yan YS (2014) J Lumin 153:326CrossRefGoogle Scholar
  3. 3.
    Shafer TJ, Meyer DA, Crofton KM (2005) Environ Health Perspect 113:123CrossRefGoogle Scholar
  4. 4.
    Barro R, Garcia-Jares C, Llompart M, Cela R (2006) J Chromatogr Sci 44:430CrossRefGoogle Scholar
  5. 5.
    Mezcua M, Malato O, García-Reyes JF, Molina-Díaz A, Fernández-Alba AR (2009) Anal Chem 81:913CrossRefGoogle Scholar
  6. 6.
    Hunter RE, Riederer JRAM, Ryan PB (2010) J Agric Food Chem 58:1396CrossRefGoogle Scholar
  7. 7.
    Vonderheide AP, Kauffman PE, Hieber TE, Brisbin JA, Melnky LJ, Morgan JN (2009) J Agric Food Chem 57:2096CrossRefGoogle Scholar
  8. 8.
    Andreu V, Picó Y (2004) TrAC Trends Anal Chem 23:772CrossRefGoogle Scholar
  9. 9.
    Cheng JH, Liu M, Yu Y, Wang XP, Zhang HQ, Ding L, Jin HY (2009) Meat Sci 82:407CrossRefGoogle Scholar
  10. 10.
    Liu CB, Song ZL, Pan JM, Wei X, Gao L, Yan YS, Li LZ, Wang J, Chen R, Dai JD, Yu P (2013) J Phys Chem C 117:10445CrossRefGoogle Scholar
  11. 11.
    Li Y, Dong CK, Chu J, Qi JY, Li X (2011) Nanoscale 3:280CrossRefGoogle Scholar
  12. 12.
    Sauer R, Turshatov A, Baluschev S, Landfester K (2012) Macromolecules 45:3787CrossRefGoogle Scholar
  13. 13.
    Banerjee S, König B (2013) J Am Chem Soc 135:2967CrossRefGoogle Scholar
  14. 14.
    Nakamura M, Ishimura K (2008) Langmuir 24:5099CrossRefGoogle Scholar
  15. 15.
    Gispert JR (2008) coordination chemistry. Wiley-VCH, Weinheim, p 483Google Scholar
  16. 16.
    Jose J, Burgess K (2006) J Org Chem 71:7835CrossRefGoogle Scholar
  17. 17.
    Liang RN, Song DA, Zhang RM, Qin W (2010) Angew Chem 122:2610CrossRefGoogle Scholar
  18. 18.
    Gao L, Li XY, Zhang Q, Dai JD, Wei X, Song ZL, Yan YS, Li CX (2014) Food Chem 156:1CrossRefGoogle Scholar
  19. 19.
    Gao L, Wang J, Li X, Yan Y, Li C, Pan J (2014) Anal Bioanal Chem 406:7213CrossRefGoogle Scholar
  20. 20.
    Xu CG, Ahsan Uddin KM, Shen XT, Jayawardena HSN, Yan MD, Ye L (2013) ACS Appl Mater Interfaces 5:5208CrossRefGoogle Scholar
  21. 21.
    Kong X, Gao RX, He XW, Chen LX, Zhang YK (2012) J Chromatogr A 1245:8CrossRefGoogle Scholar
  22. 22.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495CrossRefGoogle Scholar
  23. 23.
    Sellergren B (2001) J Chromatogr A 906:227CrossRefGoogle Scholar
  24. 24.
    Barahona F, Turiel E, Cormack PAG, Martín-Esteban A (2009) J Polym Sci A Polym Chem 48:1058CrossRefGoogle Scholar
  25. 25.
    Li SJ, Pilla S, Gong SQ (2009) J Polym Sci A Polym Chem 47:2352CrossRefGoogle Scholar
  26. 26.
    Kan XW, Zhao Q, Shao DL, Geng ZR, Wang ZL, Zhu JJ (2010) J Phys Chem B 114:3999CrossRefGoogle Scholar
  27. 27.
    Pérez-Moral N, Mayes AG (2004) Langmuir 20:3775CrossRefGoogle Scholar
  28. 28.
    Yang KG, Berg MM, Zhao CS, Ye L (2009) Macromolecules 42:8739CrossRefGoogle Scholar
  29. 29.
    Zhao YY, Ma YX, Li H, Wang LY (2012) Anal Chem 84:386CrossRefGoogle Scholar
  30. 30.
    Li Y, Dong CK, Chu J, Qi JY, Li X (2011) Nanoscale 3:280CrossRefGoogle Scholar
  31. 31.
    Gao DM, Wang ZY, Liu BH, Ni L, Wu MH, Zhang ZP (2008) Anal Chem 80:8545CrossRefGoogle Scholar
  32. 32.
    Guan GJ, Liu RY, Mei QS, Zhang ZP (2012) Chem Eur J 18:4692CrossRefGoogle Scholar
  33. 33.
    Feng H, Wang NY, Tran TTT, Yuan LJ, Li JZ, Cai QY (2014) Sensors Actuators B 195:266CrossRefGoogle Scholar
  34. 34.
    Si JY, Yang H (2011) Mater Chem Phys 128:519CrossRefGoogle Scholar
  35. 35.
    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Biosens Bioelectron 26:2553CrossRefGoogle Scholar
  36. 36.
    Cheng WJ, Liu ZJ, Wang Y (2013) Talanta 116:396CrossRefGoogle Scholar
  37. 37.
    Li J, Zhang XB, Liu YX, Tong HW, Xu YP, Liu SM (2013) Talanta 117:281CrossRefGoogle Scholar
  38. 38.
    Liu QH, Liu J, Guo JC, Yan XL, Wang DH, Chen L, Yan FY, Chen LG (2009) J Mater Chem 19:2018CrossRefGoogle Scholar
  39. 39.
    Stöber W, Fink A (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  40. 40.
    Ganter MA, Uicker JJ (1986) J Mech Des 108:549Google Scholar
  41. 41.
    Coggeshall ND, Saier EL (1947) J Chem Phys 15:65CrossRefGoogle Scholar
  42. 42.
    Cheng PPH, Silvester D, Wang G, Kalyuzhny G, Douglas A, Murray RW (2006) J Phys Chem B 110:4637CrossRefGoogle Scholar
  43. 43.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York, p 243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lin Gao
    • 1
    • 2
  • Wenjuan Han
    • 1
  • Xiuying Li
    • 1
  • Jixiang Wang
    • 2
  • Yongsheng Yan
    • 1
    Email author
  • Chunxiang Li
    • 2
  • Jiangdong Dai
    • 3
  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Chinese Ministry of EducationJilin Normal UniversitySipingChina
  2. 2.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina
  3. 3.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations