Analytical and Bioanalytical Chemistry

, Volume 407, Issue 30, pp 9053–9060 | Cite as

Comparative study of 13C composition in ethanol and bulk dry wine using isotope ratio monitoring by mass spectrometry and by nuclear magnetic resonance as an indicator of vine water status

  • Francois GuyonEmail author
  • Cornelis van Leeuwen
  • Laetitia Gaillard
  • Mathilde Grand
  • Serge Akoka
  • Gérald S. Remaud
  • Nathalie Sabathié
  • Marie-Hélène Salagoïty
Research Paper


The potential of wine 13C isotope composition (δ13C) is presented to assess vine water status during grape ripening. Measurements of δ13C have been performed on a set of 32 authentic wines and their ethanol recovered after distillation. The data, obtained by isotope ratio monitoring by mass spectrometry coupled to an elemental analyser (irm-EA/MS), show a high correlation between δ13C of the bulk wine and its ethanol, indicating that the distillation step is not necessary when the wine has not been submitted to any oenological treatment. Therefore, the ethanol/wine δ13C correlation can be used as an indicator of possible enrichment of the grape must or the wine with exogenous organic compounds. Wine ethanol δ13C is correlated to predawn leaf water potential (R 2 = 0.69), indicating that this parameter can be used as an indicator of vine water status. Position-specific 13C analysis (PSIA) of ethanol extracted from wine, performed by isotope ratio monitoring by nuclear magnetic resonance (irm-13C NMR), confirmed the non-homogenous repartition of 13C on ethanol skeleton. It is the δ13C of the methylene group of ethanol, compared to the methyl moiety, which is the most correlated to predawn leaf water potential, indicating that a phase of photorespiration of the vine during water stress period is most probably occurring due to stomata closure. However, position-specific 13C analysis by irm-13C NMR does not offer a greater precision in the assessment of vine water status compared to direct measurement of δ13C on bulk wine by irm-EA/MS.


Vine water status Carbon 13 isotope ratio Wine ethanol Isotope ratio monitoring mass spectrometry Isotope ratio monitoring 13C nuclear magnetic resonance 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371CrossRefGoogle Scholar
  2. 2.
    Farquhar GD, Ehleringher JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  3. 3.
    OIV-MA-AS312-07 (2001) Determination by isotope ratio mass spectometry 13C/12C of wine ethanol or that obtained through the fermentation of musts, concentrated musts or grape sugarGoogle Scholar
  4. 4.
    Spitzke ME, Fauhl-Hassek C (2010) Determination of the 13C/12C ratios of ethanol and higher alcohols in wine by GC-C-IRMS analysis. Eur Food Res Technol 223:811–820Google Scholar
  5. 5.
    Cabanero AI, Recio JL, Rupérez M (2008) Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization. Rapid Commun Mass Spectrom 22:3111–3118CrossRefGoogle Scholar
  6. 6.
    Cabanero AI, Recio JL, Rupérez M (2010) Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry. J Agric Food Chem 58:722–728CrossRefGoogle Scholar
  7. 7.
    Guyon F, Gaillard L, Salagoïty MH, Médina B (2011) Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication. Anal Bioanal Chem 401:1551–1558CrossRefGoogle Scholar
  8. 8.
    Guyon F, Gaillard L, Brault A, Gaultier N, Salagoïty MH, Médina B (2013) Potential of ion chromatography coupled to isotope ratio mass spectrometry via a liquid interface for beverages authentication. J Chromatogr A 1322:62–68CrossRefGoogle Scholar
  9. 9.
    Gilbert A, Silvestre V, Robins RJ, Remaud GS (2009) Accurate quantitative isotopic 13C NMR spectroscopy fo the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem 81:8978–8985CrossRefGoogle Scholar
  10. 10.
    Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C, Robins RJ, Akoka S, Remaud GS (2011) The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ 34:1104–1112CrossRefGoogle Scholar
  11. 11.
    Thomas F, Randet C, Gilbert A, Silvestre V, Jamin E, Akoka S, Remaud G, Segebarth N, Guillou C (2010) Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol. J Agric Food Chem 58:11580–11585CrossRefGoogle Scholar
  12. 12.
    Mattews M, Anderson M (1988) Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am J Enol Vitic 39:313–320Google Scholar
  13. 13.
    van Leeuwen C, Seguin G (1994) Incidences de l'alimentation en eau de la vigne, appréciée par l'état hydrique du feuillage, sur le développement de l'appareil végétatif et la maturation du raisin (Vitis vini-fera variété Cabernet franc, Saint-Émilion, 1990). J Int Sci Vigne Vin 28:81–110Google Scholar
  14. 14.
    van Leeuwen C, Gaudillère JP, Tregoat O (2001) L'évaluation du régime hydrique de la vigne à partir du rapport isotopique 13C/12C. L'intérêt de sa mesure sur les sucres du moût à maturité. J Int Sci Vigne Vin 35:195–205Google Scholar
  15. 15.
    Gaudillère JP, van Leeuwen C, Ollat N (2002) Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J Exp Bot 53:757–763CrossRefGoogle Scholar
  16. 16.
    van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J Int Sci Vigne Vin 43:121–134Google Scholar
  17. 17.
    Rossmann A, Schmidt HL, Reniero F, Versini G, Moussa I, Merle MH (1996) Stable carbon isotope content in ethanol of EC data bank wines from Italy, France and Germany. Z Lebensm Unters Forsch 203:293–301CrossRefGoogle Scholar
  18. 18.
    Caytan E, Botosoa EP, Silvestre V, Robins RJ, Akoka S, Remaud GS (2007) Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination. Anal Chem 79:8266–8269CrossRefGoogle Scholar
  19. 19.
    Gilbert A, Hattori R, Silvestre V, Wasano N, Akoka S, Hirano S, Yamada K, Yoshida N, Remaud GS (2012) Comparison of IRMS and NMR spectrometry for the determination of intramolecular 13C isotope composition: application to ethanol. Talanta 99:1035–1039CrossRefGoogle Scholar
  20. 20.
    Bayle K, Akoka S, Remaud GS, Robins RJ (2015) Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited. J Biol Chem 290:4118–4128CrossRefGoogle Scholar
  21. 21.
    van Leeuwen C, Friand P, Chone X, Tregoat O, Koundouras S, Dubourdieu D (2004) The influence of climate, soil and cultivar on terroir. Am J Enol Vitic 55:207–217Google Scholar
  22. 22.
    Chabreyrie D, Chauvet S, Guyon F, Salagoïty MH, Antinelli JF, Médina B (2008) Characterization and quantification of grape variety by means of shikimic acid concentration and protein fingerprint in still white wines. J Agric Food Chem 56:6785–6790CrossRefGoogle Scholar
  23. 23.
    OIV-MA-AS311-05 (2011) Determination of the deuterium distribution in ethanol derived from fermentation of grape musts, concentrated grape musts, rectified concentrated grape musts and wines by application of nuclear magnetic resonance (SNIFNMR/ RMNFINS)Google Scholar
  24. 24.
    Tenailleau E, Akoka S (2007) Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C-NMR. J Magn Reson 185:50–58CrossRefGoogle Scholar
  25. 25.
    Silvestre V, Maroga Mboula V, Jouitteau C, Akoka S, Robins RJ, Remaud GS (2009) Isotopic 13C-NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol. J Pharm Biomed 50:336–341CrossRefGoogle Scholar
  26. 26.
    Ribereau-Gaillon P, Glories Y, Maujean A, Dubourdieu D (2004) Traité d’œnologie – 2- Chimie du vin – stabilisation et traitement. Dunod Ed, Paris, p 566Google Scholar
  27. 27.
    Jamin E, Guérin R, Rétif M, Lees M, Martin GJ (2003) Improved detection of added water in orange juice by simultaneous determination of the oxygen-18/oxygen-16 isotope ratios of water and ethanol derived from sugars. J Agric Food Chem 51:811–820CrossRefGoogle Scholar
  28. 28.
    Guyon F, Auberger P, Gaillard L, Loublanches C, Viateau M, Sabathié N, Salagoity MH, Medina B (2014) 13C/12C isotope ratio of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity. Food Chem 146:36–40CrossRefGoogle Scholar
  29. 29.
    Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB (2012) Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. Proc Natl Acad Sci 109:18204–18209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Francois Guyon
    • 1
    Email author
  • Cornelis van Leeuwen
    • 2
  • Laetitia Gaillard
    • 1
  • Mathilde Grand
    • 3
  • Serge Akoka
    • 3
  • Gérald S. Remaud
    • 3
  • Nathalie Sabathié
    • 1
  • Marie-Hélène Salagoïty
    • 1
  1. 1.Service Commun des LaboratoiresPessac cedexFrance
  2. 2.Bordeaux Sciences Agro, University of Bordeaux, ISVV, Ecophysiology and Functional Genomics of Grapevines, UMR 1287Villenave d’OrnonFrance
  3. 3.EBSI Team, CEISAM, UMR CNR6230Nantes cedex 3France

Personalised recommendations