Skip to main content

Determination of 87Sr/86Sr and δ88/86Sr ratios in plant materials using MC-ICP-MS


A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, 87Sr/86Sr and δ 88/86Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g–1 or Rb < 2 ng g–1 in 150 ng g–1 Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ 88/86Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ 88/86Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average 87Sr/86Sr and δ 88/86Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10), respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: Review 2000 – (IUPAC technical report). Pure Appl Chem 75:683–800

    Article  Google Scholar 

  2. Liu H-C, You C-F, Chung C-H, Huang K-F, Liu Z-F (2011) Source variability of sediments in the Shihmen Reservoir, Northern Taiwan: Sr isotopic evidence. J Asian Earth Sci 41:297–306

    CAS  Article  Google Scholar 

  3. Liu H-C, You C-F, Chen C-Y, Liu Y-C, Chung M-T (2013) Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium. Food Chem 142:439–445

    Article  Google Scholar 

  4. Bain DC, Bacon JR (1994) Strontium isotopes as indicators of mineral weathering in catchments. Catena 22:201–214

    CAS  Article  Google Scholar 

  5. Bullen TD, Krabbenhoft DP, Kendall C (1996) Kinetic and mineralogical controls on the evolution of groundwater chemistry and Sr-87/Sr-86 in a sandy silicate aquifer, northern Wisconsin, USA. Geochim Cosmochim Acta 60:1807–1821

    CAS  Article  Google Scholar 

  6. Rediske JH, Selders AA (1953) The absorption and translocation of strontium by plants. Plant Physiol 28:594–605

    CAS  Article  Google Scholar 

  7. Russell RS, Squire HM (1958) The absorption and distribution of strontium in plants.1. Preliminary studies in water culture. J Exp Bot 9:262–276

    CAS  Article  Google Scholar 

  8. Isermann K (1981) Uptake of Stable Strontium by Plants and Effects on Plant Growth. In: Handbook of Stable Strontium. Springer, New York, pp 65–86

  9. Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Annu Rev Earth Planet Sci 35:717–746

    CAS  Article  Google Scholar 

  10. Wiegand BA, Chadwick OA, Vitousek PM, Wooden JL (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  11. Cobert F, Schmitt A-D, Bourgeade P, Labolle F, Badot P-M, Chabaux F, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta 75:5467–5482

    CAS  Article  Google Scholar 

  12. Guelke M, von Blanckenburg F, Schoenberg R, Staubwasser M, Stuetzel H (2010) Determining the stable Fe isotope signature of plant-available iron in soils. Chem Geol 277:269–280

    CAS  Article  Google Scholar 

  13. Moynier F, Pichat S, Pons M-L, Fike D, Balter V, Albarède F (2008) Isotopic fractionation and transport mechanisms of Zn in plants. Chem Geol 267:125–130

    Article  Google Scholar 

  14. von Blanckenburg F, von Wirén N, Guelke M, Weiss DJ, Bullen TD (2009) Fractionation of metal stable isotopes by higher plants. Elements 5:375–380

    Article  Google Scholar 

  15. Fietzke J, Eisenhauer A (2006) Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochem Geophys Geosyst 7. doi:10.1029/2006GC001243

  16. Ohno T, Hirata T (2007) Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry. Anal Sci 23:1275–1280

    CAS  Article  Google Scholar 

  17. Ohno T, Komiya T, Ueno Y, Hirata T, Maruyama S (2008) Determination of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr in the neoproterozoic Doushantuo Formation. Gondwana Res 14:126–133

    CAS  Article  Google Scholar 

  18. Moynier F, Agranier A, Hezel DC, Bouvier A (2010) Sr stable isotope composition of earth, the moon, mars, vesta, and meteorites. Earth Planet Sci Lett 300:359–366

    CAS  Article  Google Scholar 

  19. Krabbenhöft A, Eisenhauer A, Böhm F, Vollstaedt H, Fietzke J, Liebetrau V, Augustin N, Peucker-Ehrenbrink B, Müller MN, Horn C, Hansen BT, Nolte N, Wallmann K (2010) Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim Cosmochim Acta 74:4097–4109

    Article  Google Scholar 

  20. Ehrlich S, Gavrieli I, Dor LB, Halicz L (2001) Direct high-precision measurements of the Sr-87/Sr-86 isotope ratio in natural water, carbonates, and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J Anal At Spectrom 16:1389–1392

    CAS  Article  Google Scholar 

  21. Heumann KG, Gallus SM, Radlinger G, Vogl J (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J Anal At Spectrom 13:1001–1008

    CAS  Article  Google Scholar 

  22. Yang L, Peter C, Panne U, Sturgeon RE (2008) Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS. J Anal At Spectrom 23:1269–1274

    CAS  Article  Google Scholar 

  23. Liu H-C, You C-F, Huang K-F, Chung C-H (2012) Precise determination of triple Sr isotopes (δ87Sr and δ88Sr) using MC-ICP-MS. Talanta 88:338–344

    CAS  Article  Google Scholar 

  24. Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    CAS  Article  Google Scholar 

  25. Irrgeher J, Prohaska T, Sturgeon RE, Mester Z, Yang L (2013) Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS. Anal Methods 5:1687–1694

    CAS  Article  Google Scholar 

  26. Irisawa K, Hirata T (2006) Tungsten isotopic analysis on six geochemical reference materials using multiple collector-ICP-mass spectrometry coupled with a rhenium-external correction technique. J Anal At Spectrom 21:1387–1395

    CAS  Article  Google Scholar 

  27. Albarède F, Telouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmochim Acta 68:2725–2744

    Article  Google Scholar 

  28. Ellison SLR, Rosslein M, Williams A (2001) Quantifying Uncertainty in Analytical Measurements, 2nd edn. EURACHEM/CITAC, UK, pp 87–94

    Google Scholar 

Download references


This work was supported by grants from the Ministry of Science and Technology (MOST-104-2116-M-006-005), Taiwan to C.F.Y.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chen-Feng You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Applications of Isotopes in Analytical Ecogeochemistry with guest editors Thomas Prohaska, Andreas Zitek, and Johanna Irrgeher.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 141 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, HC., Chung, CH., You, CF. et al. Determination of 87Sr/86Sr and δ88/86Sr ratios in plant materials using MC-ICP-MS. Anal Bioanal Chem 408, 387–397 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • NIST SRM-1515
  • Sr isotopes
  • Mass spectrometry/ICP-MS
  • Microwave digestion